Posts Tagged with "average PUD"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on February 11, 2021 #361

前稿#355の続きです。変更方針はMPF latentに分類していたMPF detectedを即時修理とするものです。従って、MPF detectedは故障しないことと等価です。

OPRSPFの平均PUDの計算

従来はMPF detectedをMPF latent扱いにしていたものを、MPF detectedに変更しました。MPFの意味はVSG preventableなIFのフォールトであるため、SPFの計算に影響はありません。従って、以下は前稿#103と同様です。

OPRステートからSPFステートへの平均PUD(66.13)を計算します。

図%%.1
図361.1 CTMCにおいてOPRSPFの遷移

OPRからSPFへの平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{SPF,IFU}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{OPR\ at\ }t\cap\mathrm{IF\ down\ in\ }(t, t+dt]\cap\overline{\mathrm{IF\ preventable}}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{OPR\ at\ }t\}\Pr\{\overline{\mathrm{IF\ preventable}}\} \end{eqnarray} \tag{361.1} $$ ここでOPRは、 $$ \begin{eqnarray} \Pr\{\mathrm{OPR\ at\ }t\}&=&\Pr\{\mathrm{IF\ up\ at\ }t\cap\mathrm{SM\ up\ at\ }t\}=\Pr\{\mathrm{IF^U\ up\ at\ }t\}\Pr\{\mathrm{SM\ up\ at\ }t\}\\ &=&R_\mathrm{IF}(t)A_\mathrm{SM}(t)\end{eqnarray}\tag{361.2} $$

一方、(361.1)の右辺積分中の条件付き確率式は、 $$ \Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR\ at\ }t\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U\ up\ at\ }t\cap\text{SM up at }t\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U\ up\ at\ }t\}=\lambda_{\mathrm{IF}}dt \tag{361.3} $$ よって平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{SPF,IFU}}}&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}(1-K_{\mathrm{IF,RF}})R_\mathrm{IF}(t)A_\mathrm{SM}(t)\lambda_{\mathrm{IF}}dt\\ &=&\frac{1-K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[1-Q_\text{SM}(t)\right]f_{\mathrm{IF}}(t)dt\\ &=&\frac{1-K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_{\mathrm{IF}}(t)dt-\frac{1-K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\text{SM}(t)f_{\mathrm{IF}}(t)dt\\ &=&\frac{1-K_{\mathrm{IF,RF}}}{T_\text{lifetime}}F_\text{IF}(T_\text{lifetime})\\ & &-\frac{1-K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_\text{SM,MPF})F_\text{SM}(t)+K_\text{SM,MPF}F_\text{SM}(u)\right]f_{\mathrm{IF}}(t)dt,\\ & &\text{ただし、}u:=t\bmod\tau \end{eqnarray} \tag{361.4} $$ よって、$F_\text{SM}(t)=1-e^{-\lambda_{\mathrm{SM}}t}\approx\lambda_{\mathrm{SM}}t$と近似し、 $$ \begin{eqnarray} (361.4)&\approx&(1-K_{\mathrm{IF,RF}})\lambda_{\mathrm{IF}}-\frac{1-K_{\mathrm{IF,RF}}}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau]\\ &=&(1-K_{\mathrm{IF,RF}})\lambda_{\mathrm{IF}}-(1-K_{\mathrm{IF,RF}})\alpha,\\ & &\text{ただし、} \alpha:=\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau] \end{eqnarray} \tag{361.5} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

PMHF導出法の変更

posted by sakurai on February 2, 2021 #355

動機

長い間MPF detectedの扱いに疑問が潜在していました。弊社では、MPF detectedは結局修理されないので、いつの日か2つ目のSMのフォールトによりDPFとなると考えます。従って、MPF detectedは結局MPF latent (=LF)となるとした上でPMHF式を導出しています。しかしながら、この考え方には、次の2点の問題があります。

  • 規格のフォールト分類フローでは、MPF detectedとMPF latentが分離されているにも関わらず、弊社ではどちらもMPF latentと扱っているため、規格のフォールト分類と矛盾する。
  • 規格LFMの計算式にMPF detectedが入っていない。これは、規格はMPF detectedは安全側だと考えているためだと推測されるが、弊社では上記の理由から危険側としている。

そこで、これらを満足する方法を検討します。最初の論文で導入された、SM1による検出率を意味する次の条件付き確率$K_\text{det}$を、ここで再び使用します。 $$ K_\text{det}:=\Pr\{\text{Fault detected}\ |\ \text{Fault prevented}\}\tag{355.1} $$

これはFMCというよりも、アーキテクチャ的に次のように0または1の値をとります。

  • 検出系(非冗長系):1st SMはIFのフォールトを検出することによりVSG抑止を行う場合。この場合は検出するから抑止されるのであり、抑止される部分に対する検出される割合は100%です。すなわち$K_\text{det}=1$となります。
  • 冗長系:1st SMはIFの代替機能を持つことによりVSG抑止を行う場合。この場合はVSG抑止はしますが、1st SMは一切検出を行いません。従って、抑止される部分の検出される割合は0%です。すなわち$K_\text{det}=0$となります。また、両チャネルが同時にフォールトすることは無いため、VSG抑止率は100%、すなわち$K_\text{IF,RF}=1$となります。

さて、MPF detectedの考え方ですが、主機能のVSGが抑止されているので、運転はできないかもしれないものの、とりあえず安全状態は保たれます。従ってSPFもDPFも発生しません。しかるべき時間後に(レッカー車で)修理工場へ持っていき、修理が行われ、その後に運転が継続できると考えます。

主機能は動作しないので、通電はされず、運転時間は増大しません。従って、故障から修理までの時間は無視することができるので、1st SMにより検出された故障は瞬間的に修理された=故障が起きなかったのと等価です。

やや無理がある解釈の感がありますが、今回このように仮定してPMHF式の導出を進めることにします。 ブログ記事#361に続きます。

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on November 18, 2020 #336

本年1月にUSのパームスプリングスで開催された、第67回国際信頼性学会のRAMS 2020に採択された論文は、半年後にようやくIEEE Xploreに掲載されました。しかしながら、学会側で原論文の体裁を編集したときに、式に誤りが混入したようで、一部の式に誤りがありました。

具体的には、図336.1のように式(9)が編集されていましたが、図336.1の1行目がおかしい部分で、確率式の後のカッコの意味が取れません。

図%%.1
図336.1 誤りが混入した論文式(9)

これに気づいたため、IEEE Xploreに連絡を取り、式(9)を原論文のものに戻してもらいました。IEEE Xploreに掲載されている論文に、以下のようにあまり見ない注が付けられているのは、このためのようです。

Notes: As originally published text, pages or figures in the document were missing or not clearly visible. A corrected replacement file was provided by the authors.

注意: 元々公開されていたテキスト、文書内のページや図が欠落していたり、はっきりと見えなかったりしていたため、著者から訂正された差し替えファイルが提供された。

図336.2に原論文の式(9)を示します。黄色の部分が誤って削除されてしまった部分です。幸いこの他は原文どおりでした。

図%%.2
図336.2 原論文の式(9)

ちなみに、式の意味は各々以下のとおりです。

  • 最初の等号: PMHFは車両寿命におけるアイテムのダウン確率の時間平均で定義されます(弊社の定義)。
  • 次の等号: アイテムの時刻tにおけるダウン確率(PUA)を$Q(t)$とすると、車両寿命におけるアイテムのダウン確率は$Q(T_\text{lifetime})$で表されます。
  • 次の等号: $Q(T_\text{lifetime})$はダウン確率密度(PUD)$q(t)$を0から車両寿命まで積分することで得られます。
  • 次の等号: その時間平均とは平均ダウン確率密度(APUD)に他なりません。
  • 次の等号: ダウン確率密度$q(t)$は、アイテムがtにおいて稼働(up)しており、かつその後の微小時間間隔$dt$中に不稼働(down)となる確率で表されます。

左矢前のブログ 次のブログ右矢

$M_\text{PMHF}$の計算 (12)

posted by sakurai on March 27, 2020 #228

#223に示した理由により、本稿の議論は全て取り消します。

前稿において、(227.2)右辺第2項を(一部の係数を除き)展開すると、 $$ \require{cancel} \img[-1.35em]{/images/withinseminar.png}\\ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)tf_\text{IF}(t)dt \tag{228.1} $$ ここで、WolframAlphaによる級数展開を用いると、

integral_0^(τ) (1 - exp(-λ_2 t)) λ_1 exp(-λ_1 t) dt * (τ^-1)

$$ \frac{1}{\tau}\int_0^\tau F_2(t)f_1(t)dt \approx\frac{1}{2}\lambda_1\lambda_2\tau \tag{228.2} $$

integral_0^(τ) (1 - exp(-λ_2 t)) λ_1 exp(-λ_1 t) t dt * (τ^-1)

$$ \frac{1}{\tau}\int_0^\tau F_2(t)tf_1(t)dt \approx\frac{1}{3}\lambda_1\lambda_2\tau^2 \tag{228.3} $$

$$ (228.1)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_\text{SM,MPF})F_\mathrm{SM}(t)tf_\text{IF}(t)+K_\text{SM,MPF}F_\mathrm{SM}(u)tf_\text{IF}(t)\right]dt\\ =\frac{1-K_\text{SM,MPF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}F_\text{SM}(t)tf_\text{IF}(t)dt+\frac{K_\text{SM,MPF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}F_\text{SM}(u)tf_\text{IF}(t)dt\\ \quad\text{s.t. }u:=t\bmod\tau\tag{228.4} $$ (228.4)右辺第2項を$t=i\tau+u, i=0,1,...,n-1,T_\text{lifetime}=n\tau$として$t$を$u$で表す変数変換を行うと、 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}F_\text{SM}(u)tf_\text{IF}(t)dt =\frac{1}{T_\text{lifetime}}\sum_{i=0}^{n-1}\int_0^\tau F_\text{SM}(u)(i\tau+u)f_\text{IF}(i\tau+u)du\\ =\frac{\tau}{T_\text{lifetime}}\sum_{i=0}^{n-1}ie^{-\lambda_\text{IF}i\tau}\int_0^\tau F_\text{SM}(u)f_\text{IF}(u)du+\frac{1}{T_\text{lifetime}}\sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau}\int_0^\tau F_\text{SM}(u)uf_\text{IF}(u)du\\ =\frac{1}{\bcancel{T_\text{lifetime}}}\left(\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}\tau^{\bcancel{3}2}\right)\left(\bcancel{\tau}\frac{\bcancel{T_\text{lifetime}}(T_\text{lifetime}-\tau)}{\bcancel{\tau}^\bcancel{2}}+\frac{\bcancel{T_\text{lifetime}}}{\bcancel{\tau}}\right)\\ =\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}\tau^2(T_\text{lifetime}-\tau+1) \tag{228.5} $$ (228.3)を(228.4)の第1項、(228.5)を第2項に用いて、

$$ (228.1)=\frac{1-K_\text{SM,MPF}}{\bcancel{T_\text{lifetime}}} \left(\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}^{\bcancel{3}2}\right) +K_\text{SM,MPF} \left(\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}\tau^2(T_\text{lifetime}-\tau+1)\right) \tag{228.6} $$


左矢前のブログ 次のブログ右矢

$M_\text{PMHF}$の計算 (11)

posted by sakurai on March 26, 2020 #227

#223に示した理由により、本稿の議論は全て取り消します。

前稿において、LAT2ではIFのAvailability(227.1で赤字で表示)は$R_\text{IF}(t)$でも$A_\text{IF}(t)$でもないことを解説しました。 $$ \overline{q_{\mathrm{DPF1,IFR}}}=\frac{K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)\color{red}{A_{\mathrm{IF}}(t)}\lambda_{\mathrm{IF}}dt \approx K_\text{IF,RF}\alpha \tag{227.1} $$ LAT2に来た時刻を$s$としたとき、$A_\text{IF}(s)R_\text{IF}(t-s)$で表される状態確率となりますが、問題は$s$が確率的に値を取ることです。これを消去するため、前稿(224.8)の結果を使用すれば、 $$ (227.1)=\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)\left(1-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)\right)R_\text{IF}(t)\lambda_\mathrm{IF}dt\\ =\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)\left(1-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)\right)f_\text{IF}(t)dt\\ =\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\left(1+\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}\tau\right)\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)f_\text{IF}(t)dt\\ -\frac{K_\mathrm{IF,RF}K_\text{IF,MPF}\lambda_\text{IF}}{2T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)tf_\text{IF}(t)dt \tag{227.2} $$ (227.2)右辺第1項は、積分公式から $$ \frac{K_\mathrm{IF,RF}}{2}\left(1+\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}\tau\right)\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{SM,MPF})T_\text{lifetime}+K_\text{SM,MPF}\tau\right]\tag{227.3} $$ (227.2)右辺第2項を(一部の係数を除き)展開すると、 $$ \require{cancel} \img[-1.35em]{/images/withinseminar.png}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_\text{SM,MPF})F_\mathrm{SM}(t)tf_\text{IF}(t)+K_\text{SM,MPF}F_\mathrm{SM}(u)tf_\text{IF}(t)\right]dt\\ =\frac{(1-\bcancel{K_\text{SM,MPF}})}{T_\text{lifetime}}\lambda_\text{IF}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t}dt-\frac{1-K_\text{SM,MPF}}{T_\text{lifetime}}\lambda_\text{IF}\int_0^{T_\text{lifetime}}te^{-(\lambda_\text{IF}+\lambda_\text{SM})t}dt\\ +\bcancel{\frac{K_\text{SM,MPF}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t}dt}-\frac{K_\text{SM,MPF}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t-\lambda_\text{SM}u}dt\\ =\frac{\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t}dt-\frac{1-K_\text{SM,MPF}}{T_\text{lifetime}}\lambda_\text{IF}\int_0^{T_\text{lifetime}}te^{-(\lambda_\text{IF}+\lambda_\text{SM})t}dt\\ -\frac{K_\text{SM,MPF}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t-\lambda_\text{SM}u}dt \quad\text{s.t. }u:=t\bmod\tau\tag{227.4} $$ (225.3)及び(226.1)の結果を用いて、 $$ (227.4)=\lambda_\text{IF}\left(\frac{T_\text{lifetime}}{2}-\frac{\lambda_\text{IF}T_\text{lifetime}^2}{3}\right)\\ -(1-K_\text{SM,MPF})\lambda_\text{IF}\left(\frac{T_\text{lifetime}}{2}-\frac{(\lambda_\text{IF}+\lambda_\text{SM})T_\text{lifetime}^2}{3}\right)\\ -K_\text{SM,MPF}\lambda_\text{IF}\img[-1.35em]{/images/withinseminar.png} \quad\text{s.t. }u:=t\bmod\tau\tag{227.5} $$


左矢前のブログ 次のブログ右矢

PMHF計算に関する積分公式 (3)

posted by sakurai on March 25, 2020 #226

#223に示した理由により、本稿の議論は全て取り消します。

前稿の続きで、ISO 26262のPMHFの導出の場合、確率積分を実行する際に次の(226.1)が出てくるため、あらかじめ結果を導出しておき、後程積分公式として使用します。 $$ \img[-1.35em]{/images/withinseminar.png} \tag{226.1} $$ $t=i\tau+u, i=0,1,...,n-1, n:=\frac{T_\text{lifetime}}{\tau}$とおいて変数変換すれば、 $$ (226.1)=\frac{1}{T_\text{lifetime}}\sum_{i=0}^{n-1}\int_0^\tau(i\tau+u)e^{-\lambda_\text{IF}(i\tau+u)-\lambda_\text{SM}u}du\\ =\tau\sum_{i=0}^{n-1}i e^{-\lambda_\text{IF}i\tau} \frac{1}{T_\text{lifetime}}\int_0^\tau e^{-(\lambda_\text{IF}+\lambda_\text{SM})u}du +\sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau}\frac{1}{T_\text{lifetime}}\int_0^\tau ue^{-(\lambda_\text{IF}+\lambda_\text{SM})u}du\\ \tag{226.2} $$ ここで、(226.2)右辺第1項の級数の和を求めるため和を$x$とおけば、 $$ x:=\sum_{i=0}^{n-1}i e^{-\lambda_\text{IF}i\tau}=e^{-\lambda_\text{IF}\tau}+2e^{-\lambda_\text{IF}2\tau}+...+(n-1)e^{-\lambda_\text{IF}(n-1)\tau}\tag{226.3} $$ となり、 $$ e^{-\lambda_\text{IF}\tau}x=\sum_{i=0}^{n-1}i e^{-\lambda_\text{IF}(i+1)\tau}=e^{-\lambda_\text{IF}2\tau}+...+(n-2)e^{-\lambda_\text{IF}(n-1)\tau}+(n-1)e^{-\lambda_\text{IF}n\tau}\tag{226.4} $$ よって、(226.3)-(226.4)より、 $$ x(1- e^{-\lambda_\text{IF}\tau})=e^{-\lambda_\text{IF}\tau}+e^{-\lambda_\text{IF}2\tau}+...+e^{-\lambda_\text{IF}(n-1)\tau}-(n-1)e^{-\lambda_\text{IF}n\tau}\\ =\underbrace{e^{-\lambda_\text{IF}\tau}+e^{-\lambda_\text{IF}2\tau}+...+e^{-\lambda_\text{IF}(n-1)\tau}+e^{-\lambda_\text{IF}n\tau}}_{\text{n terms}}-ne^{-\lambda_\text{IF}n\tau}\\ =e^{-\lambda_\text{IF}\tau}\frac{1-e^{-\lambda_\text{IF}T_\text{lifetime}}}{1-e^{-\lambda_\text{IF}\tau}}-n e^{-\lambda_\text{IF}T_\text{lifetime}}\tag{226.5} $$ よって、Maclaurin展開の1次近似を用いれば、 $$ \require{cancel} x\approx\frac{\bcancel{\lambda_\text{IF}}T_\text{lifetime}}{\lambda_\text{IF}^\bcancel{2}\tau^2}(1-\lambda_\text{IF}\tau)-\frac{n(1-\lambda_\text{IF}T_\text{lifetime})}{\lambda_\text{IF}\tau}\\ =\frac{T_\text{lifetime}(\bcancel{1}-\bcancel{\lambda_\text{IF}}\tau)-T_\text{lifetime}(\bcancel{1}-\bcancel{\lambda_\text{IF}}T_\text{lifetime})}{\bcancel{\lambda_\text{IF}}\tau^2}=\frac{T_\text{lifetime}(T_\text{lifetime}-\tau)}{\tau^2}\tag{226.6} $$ 次に、(226.2)右辺第2項の級数の和は、 $$ \sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau}=e^{-\lambda_\text{IF}\tau}+...+e^{-\lambda_\text{IF}(n-1)\tau}=\frac{1-e^{-\lambda_\text{IF}T_\text{lifetime}}}{1-e^{-\lambda_\text{IF}\tau}} \approx\frac{\bcancel{\lambda_\text{IF}}T_\text{lifetime}}{\bcancel{\lambda_\text{IF}}\tau} \tag{226.7} $$ 次に、(226.2)右辺第1項の定積分の値は、 $$ \int_0^\tau e^{-(\lambda_\text{IF}+\lambda_\text{SM})u}du =\left[\frac{e^{-(\lambda_\text{IF}+\lambda_\text{SM})u}}{-(\lambda_\text{IF}+\lambda_\text{SM})}\right]_0^\tau =\frac{e^{-(\lambda_\text{IF}+\lambda_\text{SM})\tau}-1}{-(\lambda_\text{IF}+\lambda_\text{SM})}\\ \approx\frac{1}{\bcancel{\lambda_\text{IF}+\lambda_\text{SM}}}\left(\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}\tau-\frac{1}{2}(\lambda_\text{IF}+\lambda_\text{SM})^\bcancel{2}\tau^2\right) =\tau\left(1-\frac{1}{2}(\lambda_\text{IF}+\lambda_\text{SM})\tau\right) \tag{226.8} $$ 以上から、$\color{red}{(226.5)}$と$\color{green}{(226.6)}$を(226.2)に適用し、$\color{blue}{(226.7})$と部分積分の結果$\color{purple}{(225.1)}$を用いれば、 $$ (226.2)=\bcancel{\tau}\color{red}{\left(\frac{\bcancel{T_\text{lifetime}}(T_\text{lifetime}-\tau)}{\bcancel{\tau^2}}\right)}\frac{1}{\bcancel{T_\text{lifetime}}}\color{blue}{\bcancel{\tau}\left(1-\frac{1}{2}(\lambda_\text{IF}+\lambda_\text{SM})\tau\right)}\\ +\color{green}{\frac{\bcancel{T_\text{lifetime}}}{\bcancel{\tau}}}\frac{1}{\bcancel{T_\text{lifetime}}} \color{purple}{\left(\frac{\tau^\bcancel{2}}{2}- \frac{(\lambda_\text{IF}+\lambda_\text{SM})\tau^{\bcancel{3}2}}{3}\right)}\\ =(T_\text{lifetime}-\tau)\left(1-\frac{1}{2}(\lambda_\text{IF}+\lambda_\text{SM})\tau\right)+\left(\frac{\tau}{2}-\frac{1}{3}(\lambda_\text{IF}+\lambda_\text{SM})\tau^2\right)\\ =\left(1-\frac{1}{2}(\lambda_\text{IF}+\lambda_\text{SM})\tau\right)T_\text{lifetime}-\frac{\tau}{2}+\frac{1}{6}(\lambda_\text{IF}+\lambda_\text{SM})\tau^2 \tag{226.9} $$


左矢前のブログ 次のブログ右矢

PMHF計算に関する積分公式 (2)

posted by sakurai on March 24, 2020 #225

#223に示した理由により、本稿の議論は全て取り消します。

ISO 26262のPMHFの導出の場合、確率積分を実行する際に次の(225.1)が出てくるため、あらかじめ結果を導出しておき、後程積分公式として使用します。 $$ \img[-1.35em]{/images/withinseminar.png} \tag{225.1} $$ 部分積分により、 $$ \require{cancel} (225.1)=\left[\frac{t e^{-\lambda t}}{-\lambda }\right]_0^{\tau} -\int_0^{\tau}\frac{e^{-\lambda t}}{-\lambda }dt =\left(\frac{\tau e^{-\lambda\tau}}{-\lambda }\right) -\left[\frac{e^{-\lambda t}}{\lambda ^2}\right]_0^{\tau}\\ =-\frac{\tau}{\lambda}e^{-\lambda \tau} +\left(\frac{1-e^{-\lambda\tau}}{\lambda ^2}\right)\\ \approx-\frac{\tau}{\lambda}\left(1-\lambda\tau+\frac{1}{2}\lambda^2\tau^2\right) +\frac{1}{\lambda^\bcancel{2}}\left(\bcancel{\lambda}\tau-\frac{1}{2}\lambda^\bcancel{2}\tau^2+\frac{1}{6}\lambda^{\bcancel{3}2}\tau^3\right)\\ =-\frac{1}{\bcancel{\lambda}}\left(\bcancel{\tau}-\bcancel{\lambda}\tau^2+\frac{1}{2}\lambda ^\bcancel{2}\tau^3\right) +\frac{1}{\bcancel{\lambda}}\left(\bcancel{\tau}-\frac{1}{2}\bcancel{\lambda}\tau^2+\frac{1}{6}\lambda^\bcancel{2}\tau^3\right)\\ =\frac{\tau^2}{2}-\frac{\lambda\tau^3}{3} \tag{225.2} $$ 積分範囲が$[0, \tau)$ではなく、$[0, T_\text{lifetime})$の場合で車両寿命で平均化する場合は、$\tau$を$T_\text{lifetime}$と置きなおせば、

$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}} t e^{-\lambda t}dt =\frac{T_\text{lifetime}}{2}-\frac{\lambda T_\text{lifetime}^2}{3}\tag{225.3} $$ と求まります。


左矢前のブログ 次のブログ右矢

IFのAvailabilityの平均化

posted by sakurai on March 20, 2020 #224

#223に示した理由により、本稿の議論は全て取り消します。

今回はダイレクトに $$ \img[-1.35em]{/images/withinseminar.png} \tag{224.1} $$ を求めます。

まず、(224.1)式に、指数分布式である $$ \begin{eqnarray} \begin{cases} A_\text{IF}\text(s)&=&(1-K_\text{IF,MPF})e^{-\lambda_\text{IF}s}+K_\text{IF,MPF}e^{-\lambda_\text{IF}u}, u:=s\bmod \tau及び\\ R_\text{IF}(s)&=&e^{-\lambda_\text{IF}s} \end{cases} \end{eqnarray}\tag{224.2} $$ を代入し、 $$ \begin{eqnarray} (224.1)&=&\frac{1}{t}\int_0^t\left[(1-K_\text{IF,MPF})e^{-\lambda_\text{IF}s}+K_\text{IF,MPF}e^{-\lambda_\text{IF}u}\right]e^{-\lambda_\text{IF}(t-s)}ds\\ &=&\frac{1-K_\text{IF,MPF}}{t}\int_0^te^{-\lambda_\text{IF}s}e^{-\lambda_\text{IF}(t-s)}ds +\frac{K_\text{IF,MPF}}{t}\int_0^te^{-\lambda_\text{IF}u}e^{-\lambda_\text{IF}(t-s)}ds\\ &=&\frac{1-K_\text{IF,MPF}}{t}e^{-\lambda_\text{IF}t}\int_0^t ds +\frac{K_\text{IF,MPF}}{t}e^{-\lambda_\text{IF}t}\int_0^te^{-\lambda_\text{IF}(u-s)}ds\\ \end{eqnarray} \tag{224.3} $$ ここで、右辺第2項において、$u=s\bmod\tau$より、$s=i\tau+u, i=0,1,...,k-1, t=k\tau$とおいて、$s$を$u$と$i$で表し $$ \img[-1.35em]{/images/withinseminar.png} \tag{224.4} $$ を計算すると、 $$ (224.4)=\sum_{i=0}^{k-1}\int_0^\tau e^{\lambda_\text{IF}i\tau}du =\sum_{i=0}^{k-1}e^{\lambda_\text{IF}i\tau}\int_0^\tau du =\tau\sum_{i=0}^{k-1}e^{\lambda_\text{IF}i\tau} \tag{224.5} $$

ここで、等比数列の和及びMaclaurin展開の1次近似より、 $$ \require{cancel} (224.5)=\tau\frac{1-e^{\lambda_\text{IF}k\tau}}{1-e^{\lambda_\text{IF}\tau}} =\tau\frac{1-e^{\lambda_\text{IF}t}}{1-e^{\lambda_\text{IF}\tau}} \approx\bcancel{\tau}\frac{\bcancel{\lambda_\text{IF}}t-\frac{1}{2}\lambda_\text{IF}^\bcancel{2}t^2}{\bcancel{\lambda_\text{IF}}\bcancel{\tau}-\frac{1}{2}\lambda_\text{IF}^\bcancel{2}\tau^\bcancel{2}} =\frac{t-\frac{1}{2}\lambda_\text{IF}t^2}{1-\frac{1}{2}\lambda_\text{IF}\tau}\\ \approx\left(t-\frac{1}{2}\lambda_\text{IF}t^2\right)\left(1+\frac{1}{2}\lambda_\text{IF}\tau\right) \tag{224.6} $$ であるから、(224.6)及び(224.4)の結果を(224.3)に用いれば、 $$ (224.3)\approx\frac{1-K_\text{IF,MPF}}{\bcancel{t}}e^{-\lambda_\text{IF}t}\bcancel{t} +\frac{K_\text{IF,MPF}}{\bcancel{t}}e^{-\lambda_\text{IF}t}\bcancel{t}\left(1-\frac{1}{2}\lambda_\text{IF}t\right)\left(1+\frac{1}{2}\lambda_\text{IF}\tau\right)\\ \tag{224.7} $$ ここで、$\lambda_\text{IF}^2\approx0$と置いて、 $$ (224.7)\approx\left(1\bcancel{-K_\text{IF,MPF}}\right)e^{-\lambda_\text{IF}t} +K_\text{IF,MPF}e^{-\lambda_\text{IF}t}\left(\bcancel{1}-\frac{1}{2}\lambda_\text{IF}(t-\tau)\right)\\ =e^{-\lambda_\text{IF}t}-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)e^{-\lambda_\text{IF}t} =\left(1-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)\right)R_\text{IF}(t) \tag{224.8} $$ 以上から、$s$を消去して$t$で表すことができました。


左矢前のブログ 次のブログ右矢

$M_\text{PMHF}$の計算 (10)

posted by sakurai on March 17, 2020 #223

SMがフォールトしてLAT2のステートに来た時刻を$s$とすると、時刻$t$以前に来たことから$0\le s\le t$であり、SMとIFは故障事象自体は独立ですが、相手の故障事象により自分の状態確率が変化します。

この論点は、LAT2においてはSMがフォールトしているので、IFがアンリペアラブルである⇒LAT2に来た時間$s$により状態確率$\Pr\{\text{LAT2 at }t\}$が変化する⇒マルコフ性が崩れる、と新たに誤解したことによるものです。

正しくは、IFのリペアラビリティは1st SMであるSM(=LAT2でダウンしている)により決まりません。IFのリペアラビリティは2nd SMにのみ決定され、2nd SMは故障しないため、マルコフ性は崩れていません。従って本稿(#223)以降(~#228)の議論は全て取り消します。

正しい議論は以前のhttp://fs-micro.com/blogSummary.htmlの「PMHFの計算」~「PMHFの計算(8)」のとおりです。

従って、時刻$t$以前の時刻$s$の$0\le s\le t$におけるIFの平均稼働確率を求め、それを用いて状態確率を表し、さらに遷移確率をかけるという方法で解きます。

以前求めた、$M_\text{PMHF}$の計算(8)の式(222.2)は、 $$ \begin{eqnarray} \Pr\{\mathrm{LAT2\ at\ }t\}&=&\Pr\{\mathrm{IF^R\ up\ at\ }t\cap\mathrm{SM\ down\ at\ }t\}\\ &=&\Pr\{\mathrm{IF^R\ up\ at\ }t\}\Pr\{\mathrm{SM\ down\ at\ }t\}\\ &=&\color{red}{A_{\mathrm{IF}}(t)}Q_{\mathrm{SM}}(t)\tag{222.2再掲} \end{eqnarray} $$ でしたが、IFのAvailability$\Pr\{\mathrm{IF^R\ up\ at\ }t\}$は、OPRに居る時、すなわち時刻$s$以前にSMがupな状態では、IFはリペアラブル($=\mathrm{IF^\text{R}}$)であり、時刻$s$でSMにフォールトが起きてdownしLAT2に来た時からは、IFはアンリペアラブル($=\mathrm{IF^\text{U}}$)となります。よって、本来は $$ \begin{eqnarray} \Pr\{\mathrm{IF^R\ up\ at\ }t\}&=&\Pr\{\mathrm{IF^\text{R}\ up\ at\ }s\cap\mathrm{IF^\text{U}\ up\ in\ }(s, t]\}\\ &=&\Pr\{\mathrm{IF^\text{R}\ up\ at\ }s\}\Pr\{\mathrm{IF^\text{U}\ not\ failed\ in\ }(s, t]\}\\ &=&A_\text{IF}(s)R_\text{IF}(t-s)\tag{223.1} \end{eqnarray} $$ 従って、(222.2)で右辺に$A_\text{IF}(t)$を使用したのは、LAT2におけるIFのAvailabilityの上限を求めたことになります。その理由は、大小関係は $$ R(t)\le A(s)R(t-s)\le A(t)\quad\text{s.t. }0\le s\le t\tag{223.2} $$ だからです。従って、IFのAvailabilityの下限を求めるには、右辺を$R_\text{IF}(t)$とおいて積分します。これは規格式と同じPMHF式を与えます。IFのAvailabilityの下限の積分はIFUモデルと同じになるため、(104.5)を参考にして、 $$ \overline{q_{\mathrm{DPF1,IFR}}}=\frac{K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)\color{red}{R_{\mathrm{IF}}(t)}\lambda_{\mathrm{IF}}dt \approx K_\text{IF,RF}\alpha \tag{223.3} $$ SMのフォールトも同様であり、DPF2平均確率を求めれば、 $$ \overline{q_{\mathrm{DPF2,IFR}}}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{IF}}(t)R_{\mathrm{SM}}(t)\lambda_{\mathrm{SM}}dt \approx\beta \tag{223.4} $$ 前稿と同様に$K_\text{IF,RF}=1$とします。表221.1及び222.1より、

表223.1 IFRモデルのPMHF式$(K_\text{IF,RF}=1)$
(1)+(2b)SPF (2a)DPF1 (3)DPF2
SPF統合(LATにおけるAvailability上限) $0$ $\gamma$ $\gamma$
SPF統合(LATにおけるAvailability下限) $0$ $\alpha$ $\beta$

ただし、 $$ \gamma:=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{MPF})T_\text{lifetime}+K_\text{MPF}\tau\right],\\ \text{s.t. }K_\text{MPF}:=1-(1-K_\text{IF,MPF})(1-K_\text{SM,MPF})=K_\text{IF,MPF}+K_\text{SM,MPF}-K_\text{IF,MPF}K_\text{SM,MPF}\tag{223.5} $$ 規格式(1/2のおかしな点を修正後)は$K_\text{IF,RF}=1$として、DPFのみを表示すれば、 $$ \begin{eqnarray} 修正版規格式&=&\frac{1}{2}\lambda_\text{SM}(1-K_\text{SM,MPF})&\cdot&\lambda_\text{IF}T_\text{lifetime}\\ &+&\frac{1}{2}\lambda_\text{SM}K_\text{SM,MPF}&\cdot&\lambda_\text{IF}\tau\\ &+&\frac{1}{2}\lambda_\text{IF}(1-K_\text{IF,MPF})&\cdot&\lambda_\text{SM}T_\text{lifetime}\\ &+&\frac{1}{2}\lambda_\text{IF}K_\text{IF,MPF}&\cdot&\lambda_\text{SM}\tau\\ \end{eqnarray} =\lambda_\text{IF}\lambda_\text{SM}\left[(1-\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2})T_\text{lifetime}+\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}\tau\right]=\alpha+\beta\tag{223.6} $$ 表(223.1)より(223.6)と(223.5)の2倍を比較するため、差を計算すれば、

\(\displaystyle{ \quad\quad\quad(\alpha+\beta)-2\gamma }\)

$$ \begin{eqnarray} &=&\lambda_\text{IF}\lambda_\text{SM}\left[\left(1-\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}\right)T_\text{lifetime}+\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}\tau\right]\\ & &-\lambda_\text{IF}\lambda_\text{SM}\left[\left(1-K_\text{MPF}\right)T_\text{lifetime}+K_\text{MPF}\tau\right]\\ &=&\lambda_\text{IF}\lambda_\text{SM}\left[\left(K_\text{MPF}-\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}\right)T_\text{lifetime}-\left(K_\text{MPF}-\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}\right)\tau\right]\\ &=&\lambda_\text{IF}\lambda_\text{SM}\left(K_\text{MPF}-\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}\right)(T_\text{lifetime}-\tau)\\ &=&\lambda_\text{IF}\lambda_\text{SM}\left(\frac{K_\text{IF,MPF}+K_\text{SM,MPF}}{2}-K_\text{IF,MPF}K_\text{SM,MPF}\right)(T_\text{lifetime}-\tau)\ge 0,\\ &\quad\quad&\text{s.t. }K_\text{IF,MPF}, K_\text{SM,MPF}\in[0, 1), T_\text{lifetime}\gg \tau\tag{223.7} \end{eqnarray} $$ よって、 $$2\gamma\le M_\text{PMHF}\le\alpha+\beta \tag{223.8}$$ これより、規格式はPMHFの上限、論文式はPMHFの下限を表しています。


左矢前のブログ 次のブログ右矢

$M_\text{PMHF}$の計算 (9)

posted by sakurai on March 16, 2020 #222

IFRモデル

全く同様な計算をIFRモデルでも行います。同様に(2)を(2a)と(2b)に分離します(図222.1の赤矢印)。

図%%.1
図222.1 LAT2からの分岐をSPF方向とDPF1方向に分離
まず(2a)のDPF1方向への確率積分は、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF1,IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF1\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2\ at\ }t\cap\mathrm{IF^R\ down\ in\ }(t, t+dt]\\ & &\cap\mathrm{VSG\ of\ IF\ preventable}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT2\ at\ }t\}\Pr\{\mathrm{VSG\ of\ IF\ preventable}\} \end{eqnarray} \tag{222.1} $$ ここで(107.2)(107.3)より、 $$ \Pr\{\mathrm{LAT2\ at\ }t\}=\Pr\{\mathrm{IF^R\ up\ at\ }t\cap\mathrm{SM\ down\ at\ }t\}\\ =\Pr\{\mathrm{IF^R\ up\ at\ }t\}\Pr\{\mathrm{SM\ down\ at\ }t\}\\=A_{\mathrm{IF}}(t)Q_{\mathrm{SM}}(t)\tag{222.2} $$ 一方、(107.7)より、 $$ \Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ =\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^R\ up\ at\ }t\}=\lambda_{\mathrm{IF}}dt\tag{222.3} $$ (222.2)、(222.3)を(222.1)に用いれば、 $$ \overline{q_{\mathrm{DPF1,IFR}}}=\frac{K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)A_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt \tag{222.4} $$ これに(107.8)の結果を利用すれば、 $$ (222.4)=K_{\text{IF,RF}}\beta\tag{222.5} $$

次に(2b)のSPF方向への確率積分は、IFUモデルと変わりません。SPFは、IFのフォールトがアンプリベンタブル(VSG抑止不可)な場合に起きるためです。 $$ \begin{eqnarray} \overline{q_{\mathrm{SPF(2b),IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF(2b)\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2\ at\ }t\cap\mathrm{IF^U\ down\ in\ }(t, t+dt]\\ & &\cap\overline{\mathrm{VSG\ of\ IF\ preventable}}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT2\ at\ }t\}\Pr\{\overline{\mathrm{VSG\ of\ IF\ preventable}}\} \end{eqnarray} \tag{222.6} $$ 同様に(221.2)(221.3)を用いれば、 $$ (222.6)=\frac{1-K_{\text{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)R_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt \tag{222.7} $$ これに(104.5)の結果を利用すれば、 $$ (222.7)=(1-K_{\text{IF,RF}})\alpha\tag{222.8} $$ 以上より、IFRモデルの統合、分離方式を比較すると、表222.1のようになります。変化点を黄色で示しています。

表222.1 IFRモデルのPMHF式
(1)SPF (2)DPF1 (3)DPF2
LAT2統合 $(1-K_\text{IF,RF})\lambda_\text{IF}-(1-K_\text{IF,RF})\alpha$
(103.7)
$(1-K_\text{IF,RF})\alpha+K_\text{IF,RF}\beta$
(107.8)
$K_\text{IF,RF}\beta$
(106.4)
規格式1(1)+(2)$\dagger$ $(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\beta$
規格式3(1)+(2)+(3)$\dagger$ $(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta$
(1)SPF (2b)SPF' (2a)DPF1 (3)DPF2
LAT2分離 $(1-K_\text{IF,RF})\lambda_\text{IF}-(1-K_\text{IF,RF})\alpha$ $(1-K_\text{IF,RF})\alpha$
(222.7)
$K_\text{IF,RF}\beta$
(222.5)
$K_\text{IF,RF}\beta$
(1)+(2b)SPF (2a)DPF1 (3)DPF2
SPF統合 $(1-K_\text{IF,RF})\lambda_\text{IF}$ $K_\text{IF,RF}\beta$ $K_\text{IF,RF}\beta$
SPF/DPF統合 $(1-K_\text{IF,RF})\lambda_\text{IF}$ $2K_\text{IF,RF}\beta$

$$ \text{ただし、} \begin{cases} \alpha:=\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau]\\ \beta:=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{MPF})T_\text{lifetime}+K_\text{MPF}\tau\right]\\ K_\text{MPF}:=K_\text{IF,MPF}+K_\text{SM,MPF}-K_\text{IF,MPF}K_\text{SM,MPF} \end{cases} $$

前稿と同様、SPF統合のほうが単純な式となっています。LAT2統合において、SPFもDPF1も複雑な式でしたが、まとめ方を変えると単純な式となるため、この方が本質だと考えます。

一般式

表222.1より、2020年RAMS論文で示したように一般式は以下のようになります。 $$ M_\text{PMHF}=\bbox[#ccffff,2pt]{(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta}\\ =(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{MPF})T_\text{lifetime}+K_\text{MPF}\tau\right]\\ s.t.\quad K_\text{MPF}:=K_\text{IF,MPF}+K_\text{SM,MPF}-K_\text{IF,MPF}K_\text{SM,MPF} \tag{222.9} $$

また、$K_\text{IF,MPF}=0$のとき、すなわち、IFRモデルにおいて、IFの2nd SMが存在せずアンリペアラブルとなるときは$K_\text{MPF}=K_\text{SM,MPF}$となるため、$\beta=\alpha$となり、当然ですがIFRモデルはIFUモデルと同一の式となります。

冗長構成

IFRモデルはIFもSMもリペアラブルということは冗長構成により$K_\text{IF,RF}=1$となるため、それを適用したものを表222.2に示します。SPFが0となるため、LAT2統合でもSPF統合でも

  • $M_\text{PMHF,SPF}=0$
  • $M_\text{PMHF,DPF1}=\beta$

となり変わりません。

表222.2 冗長構成のIFRモデルのPMHF式$(K_\text{IF,RF}=1)$
(1)SPF (2)DPF1 (3)DPF2
LAT2統合 $0$ $\beta$ $\beta$
規格式1(1)+(2)$\dagger$ $\beta$
規格式3(1)+(2)+(3)$\dagger$ $2\beta$
(1)SPF (2b)SPF' (2a)DPF1 (3)DPF2
LAT2分離 $0$ $0$ $\beta$ $\beta$
(1)+(2b)SPF (2a)DPF1 (3)DPF2
SPF統合 $0$ $\beta$ $\beta$
SPF/DPF統合 $0$ $2\beta$

$$M_\text{PMHF,RD}=\bbox[#ccffff,2pt]{2\beta}\\ =\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{MPF})T_\text{lifetime}+K_\text{MPF}\tau\right]\tag{222.10}$$


$\dagger$規格式1: 規格第1版 Part 10-8.3.3の第1式(ブログの図104.2)の条件=IFが後にフォールトする場合。DPF2はSMが後にフォールトする場合なので対象外
$\dagger$規格式3: 規格第1版 Part 10-8.3.3の第3式(ブログの図105.2)の条件=IF, SMのフォールトの順を問わない場合


左矢前のブログ 次のブログ右矢


ページ: