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1. Introduction

In this paper, we consider various examples to gain a more precise understanding of
the constructions and estimates developed in the first part of this work [3]. These
examples are chosen because of their importance in reliability area. Our purpose is
two-fold: (1) to illustrate real accuracy of the proposed bounds and depict their
domain; (2) to show the simplicity of corresponding calculations for their immediate
applications. We suppose (perhaps, self-sufficiently) that the reader is familiar with
the results of [3]. Moreover, we will often refer to some relations and assertions from
[3]. In this case, if we refer to Corollary 5.4 proved in [3], then we will write
Corollary 1.5.4. Similarly, if we refer to equation (5.1) from [3], then we will write
(I.5.1). Of course, similar agreement remains true for other references from [3] as

well. In addition, we preserve some basic notations from [3].
Recall that the principal object of our investigation is a random process (rs)

describing the dynamics of a system; its state space E is partitioned into two subsets:
E dig U P, where dig is treated as a subset of "good" (or operating) states and P as

1This work was partly supported by Russian Foundation of Fundamental
Research (grant 95-01-00023), International Science Foundation and Russian Govern-
ment (grant J76100), EEC (grant INTAS-93-893), and University of Marne-La-
Valle.

Printed in the U.S.A. ()1997 by North Atlantic Science Publishing Company 21



22 CHRISTIANE COCOZZA-THIVENT and VLADIMIR KALASHNIKOV

a subset of "bad" (or failed) states. Let r inf{s:r/s E P} be the first break-down
time of the system. The failure rate function for process (r/s) is defined as

A(t) -/x--.01im
P((r _< t +AA[r > t) (1.1)

and the Vesely failure rate as

Av(t) -/x01im
P(r/t +/x eA-P r/t e dtt)

(1.2)

In Proposition 1.3.3 we introduced a quantity A which can be regarded as the failure
intensity provided that the states of (r/s) follow the stationary distribution of an auxil-
iary process (r/s) (see (I.3.9)). We are interested in limiting values A(c) and Av(CX
of the above functions. More precisely, we are looking for accuracy estimates in
approximations of A(cx) by Ay(C and by A. It turned out that, in many cases

A(cx) _< .k (see Proposition 1.3.3). Hence, the following accuracy estimates are of
interest:

pO_Pv A(c) A(c) (1.3)
For the case of special interest, when (r/s) is a Markov process with a finite state
space, Corollary 1.5.4 gives accuracy estimates in terms of the following quantities- 5maxa(r/), (1.4)

+, (1.5)0 [A0(0,0)[

X7’ A(0’ r/)1 + (1.6)

A(0, r/)
_riD A( 0) + E A(O,O)A(r/,r/)’ (1.7)

n e 2tt,n o

where A(i, j) is the intensity for Markov process (r/s) to jump from state to state j
and A(i, j)- A(i, j) for all i, j dtt. Denote upper bounds of Pv and A(cx) by

rv ee( -- _D (1.8)

Asup (1 4- rv)Av(CX), (1.9)

respectively (see Corollary 1.5.4). Following Section 1.5.1, let

r0 5E/ + E2/2E
1 E2/2E (if 1 E2/2E > 0) (1.10)

be an upper bound of p0 in the case where E and E2 can be calculated explicitly
(see (I.5.7)), and let

Ao ._q.o
,p 5_0

(1.11)

be an upper bound of A (see (I.5.1)).
The paper is organized as follows. In Section 2, we consider a set of simple re-

dundant systems consisting of three components under Markov assumptions and var-
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ious types of redundancy. Section 3 is devoted to so-called k-out-of-n systems (also
under Markov assumptions) consisting of n components such that the system is opera-
ting if and only if at least k components are operating. A generalization of this type
of systems is considered in Section 4 where Markov systems with independent com-
ponents are studied and where we do not impose specific restrictions on set dtt except
for the system coherence. In Section 5, we relax the Markov assumption and consider
semi-Markov models. All considerations are demonstrated by corresponding numerical
results.

2. Simple Examples

In this group of examples, we show how to estimate the parameters involved in
Corollary 1.5.4 and to obtain the accuracies of the bounds derived for ,(o). In all
examples, we deal with a system consisting of three components, designated by C1,
C2, and C3. Further restrictions will be imposed in the upcoming subsections.

2.1 Passive redundancy

Assume that components C1 and C3 can be in two states" "operating" denoted by 1
(resp. 3) and "failed" denoted by 1 (resp. 3 ). Component C2 is redundant with
respect to C1. Normally, C2 is waiting (state 2w) but when C1 fails, C2 tries to
replace the failed component. The replacement occurs with probability 1- 7, 0 _<
7 _< 1, and then C2 enters the operating state denoted by 2; otherwise, C2 enters the
failed state 2. Upon repairing C1, component C2 (if it is not failed) returns to the
waiting state. The failure rate of Ci is "i and its repair rate is #i" Component C2
cannot fail while it is waiting.

The dynamics of the system can be described by a Markov process with 8 states:

eo (12w3), e (123), e2 (123), e3 --(12w3), e4 (123), e5 --(123),
e6 --(123), e7 --(123).

Transition rates of the first four states are given as follows:

A(e0, e1) (1 ")’))1, A(eo, e3) ’3, A(eo, e6) "/’1,

A(el, eo) #1, A(el, eh) 3, A(el, e6) "2,

A(e2, eo) #2, A(e2, e4) $3, A(e2, e6) "1’
A(e3, e0) #3, A(e3, e5) (1 7)1, A(e3, eT)

The rest rates can be written easily.
subset of operating states:

Let us consider three different modes for the

"tl {eO’ el’ e2}’ 2 {eO’ 1’ e2’ e3’ e4}’ #3 {eO’ 1’ 2’ e3’ e5’
Mode dtt1 corresponds to the situation where C3 is in series with the other compon-
ents C1 and C2, in the sense that the system is operating if C3 is operating and
either C1 or C2 is operating. In mode dtt2, the system is operating if C1 is operating
or if C2 and C3 are both operating. Mode dtt3 has no clear meaning, in general; it
is introduced just to test our methods and to compare this case with the case of
independent components.

Let the system be in the "perfect" state e0 0 at time 0.
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Mode i,
1. Matrix A has the form

-(1- "Y)’I (1 "Y)’I 0

A ]21 ]21 0

#2 0 #2

and non-zero values of the intensity function are listed below:

a(eo) A(eo; ) "y,X + 3,c(el) A(el; P) A2 q- "3, (e2) A(e2; P) " + A3"
Let

Then

ro

0

(5, E,ro. (2.1

(el ]21 e2 ]22 0

and
1 (1 "Y)"I 1

So,
e max(ee e %0’ 5 max(5el 5e2), 5eo #D E(a A 0)

and, by (1.5.1) 1’ ee2
Ce0

In order to find the accuracy of relation (I.5.7), we have to calculate moments of
the r.v.(. It can be done by using the equality

(7 + a)Wo + ( + a)W1,
where Wo and W1 are two independent r.v.’s exponentially distributed with para-
meters (1- )I1 and 1, respectively. This yields

ro eeo/eo +
1

E{2 (’Y)I -- "3)2

Mode .l,:. Matrix A has the form

(: + a)

/-- ((1 .y)A + ha) (1 "/’)1 0

]21 ]21 0

]22 0 (]22 " "3)
]23 0 0

0 0 ]23\ ]22 +
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and non-zero values of the intensity function are

c(e0) "Y’I, ct(el) ’2 q- "3, ct(e2) (e3)- ct(e4) )1"

Let ev and 6
7
be as in (2.1). In order to estimate them we can use (1.4) through

(1.7) and Lemma 1.5.5. However, a better result can be achieved if we estimate 6e1and %1 separately from 6ei and eei for _> 2. In fact,

1 ee (’2 + "3)6e1"{5el --/*--, 1

Quantities 6e., >_ 2, can easily be found as the solution of three linear algebraic equa-
tions. But ve prefer to use Lemma 1.5.5 to show how it works and to prove its
accuracy.

Take the test function with

V(eo)-O, V(e2)-V(e3)-a, V(e4)-aq-b.
Conditions (I.5.26) yield

--/.2a q- &ab <_ 1, --/*aa <_ 1, (/*2 +/.3)b <- 1.

Let us choose
1 a-max 1 1+/,2+/*--/*2 +/.3

and
6 max(6el, a q- b), e max(eel )l(a q- b)),

T,, (1 T)Aleel "3 1e (1- 7),1 + "a + (1- /’)’1 -- )3 q-
(1- 7),1 + "a/*--"

Parameters -o and _/2D are given in (1.6) and (1.7).
Mode MI,a. Matrix A has the form

A0

( (A1 + ha) (1 "/)’1

/.2 0

/*a 0

0 /*a

\ 0 /*2

0 A3 0

0 0 A3

--(/*2 -+- )1) 0 0

0 (/*3 q- (1 ’)’1) (1 "/))1
0 /*1 (/*1 -t-/*3)

/*1 0 0

and non-zero values of the intensity function are

7al, a:, aa.
For estimating, let us employ (1.4) through (1.7) and Lemma 1.5.5.
function with

V(eo) O, V(el) ul 1 +

7)1

"2
)1
0

0

--(/.1 -+"/*2)

Take the test

2 /3’ V(ei V(el q--(i E {2,3 5 6}),+
/
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where

# min(#2, #3)"

Then
6- 1+ +--.

Parameters -0 and _riD can be estimated with the help of (1.6) and (1.7).

2.2 Independent Components

Assume now that the three components are independent.

Mode Mt1. All the characteristics can be calculated explicitly:

5--max ,- c--max
2

1 1 + + Eo(r A (to)- 1 + +E’ A1 -4- A2 A1 + A2 + A3
Me 2" We estimate 5 similarly for the passive redundance case.

max(1/, a + b) with

(( )1 a--max 1 A3 1 1+b--#2+p3 1+p2Wp ’ p2+#3

Take

A2 5max(A1 + A3, A1 @ A2) )
+ A3e eO max

Formulas (1.6) and (1.7) yield

1 1+ + +
3

Me 3" The steps are the same as in the passive redundance case.
the following test function

V(eo) 0, V(el) V(e2) V(e3) a, V(e6) V(eT) a + b,
where

a--max 1+ 1+ b-
Then Pl+ 1+

Let us take

1
#1 + ’ - min(#l’ #2)"

5=a+b, =eO=hmax(A2,
Quantities and _flD can be estimated with the help of formulas (1.6) and (1.7).
The result is the same as in the case art,

2.

2.3 Numerical Rsults

The Vesely failure rate is supposed to approximate the true failure rate to a good
accuracy if "failure rates of components are small in comparison with their repair
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rates". This is examined in the numerical calculations. Consider the following five
groups of figures.

l.a

A1 1 A2 #2 A3 #3

10 104 10 104 1 5.103
10 104 10 104 1 5.103
10 104 100 2.105 1 5.103
10 104 100 2-105 1 5-103
10 103 10 2.103 1 5.102
10 103 1 5.102 10 103
10 104 100 2.105 0.02 100

0.02 100 100 2.105 10 104
10 104 10-3 1 1 5.103
1 5.103 10 104 10-3 1

0.75
0.05

0.2
0.05

0.05
0.05

0.05
0.05

0.05

In groups 1, 2, 4, and 5 i/#i<-10-3 for all i; Ai/P2i<_10-2 in group 3. In addi-
tion, Ai/#j-<2"lO-3ingrup 1 and 1i/#j-<2"lO- m groups 2 and 3 for all and
j; in group 4 and 5, there exists a pair i, j such that Ai- #j and Ai 10#j correspon-
dingly. The results are contained in the following table where pas.red, means passive
redundancy, and ind. means independent case. See (1.3) to (1.11) for other notations.

data mode

1.a Jl 1.0100

pas.

12 1.2968.10 2

3 2.9941.10-6

1.a 1 1.0199

ind.
2.2926.10 2

13 2.2923-10-3

1.0100

1.0100

1.2984.10 2

1.2984.10 2

2.9949.10 6

2.9956.10 5

Pv

1.20.10 3

1.23.10 3

2.56.10 4

4.78.10 -4

rV

ro

1.21 10 3

1.11.10 -1

2.68.10 3

1.24.10 3

3.02.10 -3

1.0200

same
2.2952. i0 2

same
2.9964. i0 3

same

1.95.10 5

same
1.13.10 -3

same
1.36.10 3

same

1.21 I0 3

5.39.10 3

2.69.10 3

"sup
,o
8up

1.0112

1.0100

1.3019.10-2
1.2984.10-2
3.0040.10-6
3.2985.10-2

1.0212

1.0200
2.3075.10-2
1.1181.10-1
3.0045.10-3
5.5905.10-2
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data mode

1.b "1 8.5006

pas.
7.5014

2.2459.10 3

1.b .21 1.0199

ind.
tt2 2.2926- 10- 2

3 2.2923.10-3

2.a 1 1.5935

pas
5.9631 10- 1

1.2203.10 4

2.a "1
ind.

1.1039

tt2 1.0681.10-1

tt3 2.0094.10-2

2.b .21 3.0776

tt2 2.0799

4.2702. i0 4

8.5025

8.5006
7.5036

7.5014
2.2483.10 3

2.2482.10 3

1..0200

same
2.2952.10-2

same,
2.9964.10 -3

same
1.5991

1.5944
6.0199.10- 1

5.9726.10- 1

1.2279.10 4

Pv

2.20.10 4

1.84.10 -s

3.00.10 -4

7.40- 10 -8

1.09.10 -3

1.03.10 3

1.95.10 5

same
1.13.10 .3

same
1.36.10 3

same
3.52.10 .3

5.83.10 4

9.52.10 3

1.59.10 3

6.27.10 3

pas

1.2217.10 4

1.1048

same
1.0782.10 1

same
2.0486. i0- 2

same
3.0969

3.0783
2.0995

2,0807
4.2978.10 4

4.2730.10 4

same
9.46.10 -3

same
1.95.10 2

same
6.29.10 3

2.47.10 4

9.40.10 3

3.74.10 -4

6.47.10 3

6.62.10 4

rV

4.85.10 3

8.98.10 3

3.02-10 -3

1.21 10 3

5.39 I0 3

2.69.10 3

1.04.10 -2

1.89.10 1

1.03.10 2

5.19.10 -2

3.12.10 2

1.03.10 2

2.36.10 2

2.82.10 2

8.5437

8.5006
7.5710

7.5014
2.2551 10-3
3.2997.10-2

1.0212

1.0200
2.3075.10- 2

1.1181.10 -1

3.0045- 10 3

5.5905.10 2

1.6157

1.5944
6.0821.10- 1

5.9726.10 1

1.2663.10 4

3.314 10 3

1.1162

1.104
1.1036.10 1

2.4985.10 1

2.1064.10- 2

1.06.10 -2

6.01 10-1
1.07.10 2

2.87. !0 1

3.12.10- 2

2.9565
3.1298

3.0783
2.1220

2.0807
4.4320- 10 4

3.3189.10- 1
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data

2.b

ind.

3.a

pa8.

3.a

ind.

pas

3.b

ind.

mode

1.1039

1.0681. lO-a

2.0094.10 2

1.5886

6.1606.10- 1

1.7637.10 3

1.1942

2.2282.10 1

2.9250.10 2

10.505

6.8920.10 1

1.1048

same

1.0782.10 1

same
2.0486- 10-2

same
1.5941

1.5894
6.2224.10 1

6.1740.10-1
1.7693.10-3
1.7668.10-3

1.1961

same
2.2524.10 1

same
2.9644.10 2

same
10.511

10.5.05
6.9889.10

6.9103.10-1
1.4781 10- 2

10.029

2.2282.10 1

2.9250.10 2

1.4979.10 2

1.4978.10 2

10.030

same
2.2524.10 1

same
2.9644.10- 2

same

PV

8.94.10 4

same

9.46.10 -3

same
1.95.10 2

same
3.45.10 -a

5.20 10 4

1.00.10 -2

2.18.10 -3

3.18.10 -3

1.75.10 -3

1.56.10 3

same
1.09.10 -2

sarhe
1.35.10 2

same
6.12.10 4

2.20.10 7

1.41 10 2

2.65.10 3

1.34.10 2

1.4.10 2

3.93.10 5

same
1.09.10 -2

same
1.35.10 2

same

rV

r0

1.03.10- 2

2.36.10 2

2.82.10 2

1.30.10 2

1.90.10 -1

2.92.10 2

5.43.10 2

3.22.10 2

1.24.10 2

5.97.10 2

2.90.10 2

8.77.10 -2

2.95.10 2

3.12.10 2

3.30.10 2

8.15.10 -2

5.97.10 2

2.90.10 -2

1.1162

1.1048
1.1036.10- 1

2,.4985. ,! 0 1

2.1064" 10--2
2,9565
1.6148

1.5894
6.4039.10 1

6,1740.10-1
1.8262.10 3

3.2861 10 1

1.2109

1.1961
2.3868.10 1

1.1014
3.0505.10 2

5.5068- 10 1

11.433

10.505
7.1949.10

6.9103
1.5473. i0-2

5.9276.10 1

13.014

10.030
2.3868.10 1

1.10,!4
3.0505.10 1

5.5068.10 1
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data mode

4.a "Jl 6.1351 10- 1

pas.
t2 5.9524.10 1

1.1805.10 4

4.a "21 1.2386.10 1

ind.

2 1.0567.10 1

1.0004.10-2

4.b 1 10.010

pas.
.At2 1.0961 10 2

2.1785.10 5

4.b 1 10.010

ind.
t2 1.0490.10-2

At3 1.0396.10-1

5.a 1 1.4995

pas
5.0237.10- 1

3 2.1909.10 1

6.1912.10 1

5.9633.10 1

1.1986- 10 4

same

1.0684 10 1

same
1.9996.10-2

same
i0.021

10.020
2.2981 10 2

2.1894
2.2013.10 5

2.2002.10 5

10.020

same
2.1993.10-2

same
1.0484.10

PV

9.15.10 -3

same

1.10.10 -2

same
9.99.10 1

same
1.05.10 3

9.49. i0 4

1.10

9.98- i0 1

1.05.10 2

9.95.10 3

9.98.10 4

same
1.10

same

9.50.10 3

rV

r0

1.02.10 -2

5.97.10 2

1.17.10 -1

6.39.10 2

3.12

6.95

5.86

162.07

3.31

3.12

2.99
3.64

6.93

6.01

sup
Osup

6.2541 10-1
6.1444.10-1
6.7165.10-1
5.9633.10 1

4.9351 10 4

10.209
1.2611.10-1
1.2484.10 1

8.4962.10 1

120.94
1.3722.10 1

111.03
1634.1

10.020
9.8938.10-2
2.1894.10 2

9.0778 10 5

10.219
46.45

10.220
1.7449.10-1

120.82
7.3489.10 1

same
4.6620

1.4995
3.6639

5.0237.10
3.3314.10

3.3314.10

same

2.109

1.57.10 s

6.29

7.21.10 -6

5.21.10-1
5.21.10-1

7.63.105
1.97

2.33.105
3.1. !0 -1

32.60

32.58

112.12
3.5.106
1.4995

8.53- 105
5.2837.10 2

11.195

10.989
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data mode A(c)

5.a att1 1.0009

ind.
3.9015.10-3

4.9997- 10 4

5.b art,
1 5.2886- 10- 2

pas
5.2373- 10 2

"3 4.9287.10- 5

5.b at1 3.9923- 10"3
ind.

2 3.4915-10-3

1.010

sam,.,e

same
9.9900. i0 4

same

5.2957- 10 2

5.2890.10 2

5.2904.10 2

5.2837.10 2

PV

9.06.10 -3

same
2.33

same
9.98. i0

same

1.33.10 3

7.10.10 -5

1.01 10 2

8.86.10 3

rV

r0

7.25.105

1.03.105

32.7

2.02.10 3

5.68.10 -2

2.87

1.34.10 -1

sup

7.32.105
..1.010
6.63.103
!07.9

3.3627.10-2
10.99

5.3064.10 2

5.2890.10-2
2.0474.10- 1

5.2887.10-2

9.0917.10-4

5.1843.10 5

5.1843- 10 5

3.9964.10 3

same
3.9924- i0 3

same
9.9810. I0 3

same

5.19.10 -2

5.19.10 -2

1.02.10 3

same
1.43. i0 1

same

9.99

same

4.52.105
4.41.105
2.01 10 3

8.00.106

2.65.106

23.46

10.003
4.0044.10 3

3.9964- 10 3

3.19.104

109.8

In the above table, some values of r are absent. This means that we could not
estimate them for different reasons. It is seen that estimate A0 is always better than
Av(C) and, since it is an upper bound of A(cx), it is worthy to be used instead of
A(c) when it can be calculated easily. The results on the Vesely failure rate
accuracy are quite expected. The accuracy is very good for group 1, good for groups
2 and 3, bad for group 4, and very bad for group 5. The difference between passive
redundancy and independent case is negligible. Parameter 7 does not affect the
accuracy. We never have rV < 10 -3, even if Pv is small. Nevertheless, estimate

Asup is good in the first three groups, very bad in group 4 and awful in group 5.
Generally, 50 is not a good estimate for ES, except for the case where ES can be

0calculated explicitly (passive redundancy, variants 1 and 2)" Consequently, "sup
is not a good approximation of (cx).

3. The k-out-of-n Systems

Let us consider a system with n independent components C1 to Ca. The system is
operating if and only if at least k components are operating (1

_
k < n). The failure

rate of component Ci is hi, its repair rate is #i" If all components are identical, then
we can lump the states with the same number of operating components resulting in a

birth-and-death process describing the dynamics of such a system. In this case, the
system can be examined easily. If the components are not identical, it is still
possible to find a pessimistic bound of the reliability in the following way. Let
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)I(1 k )(2) k k ’(n) (resp. P:(1) --< /’t(2) - - (n)) be failure rates (resp. repair

rates) arranged in an decreasing order (resp. ascending order), and let

(j,.. O_<i_<n-1,a

a=l

bi E #(j), l < < n.

?=1
Consider a birth-and-death process with transition rates

A(i,i+l)-ai, O<_i<_n-1,

A(i,i-1)-bi, l <_i<_n.

For this process, state means that exactly components failed. It can be shown (see
Cocozza-Thivent and Roussignol [2]) that the system described by the birth-and-
death process (with the subset of "good" states 1- {0,1,...,n-k}) has a worse

reliability performance than the initial one. But the pessimistic estimations using
the birth-and-death process may be not very accurate. We will see that, in this case,
it is better to use the Vcsely failure rate approximation and to give bounds for the
relative error using the birth-and-death process.

3.1 Principle

Let (s) be a birth-and-death process with transition rates

o(i,i+l)_ai, O<_i<n-k, (3.1)

and
(i,i-1) bi, l <_ <_ n- k, (3.2)

Yo inf{t" t 0, t :/: t}

be its first return time to state 0. It can be shown, using test functions or Cocozza-
Thivent and Roussignol [2], that Eur0 _< En k0(r] E 1) and ES _< E00. Let us

take

5- En ko, 50 Eoo.

These quantities can easily be found as solutions of the following linear system:

(aI q- b1)xI q- alx2 1,

biZi-l-(ai+bi)zi+aixi+l= -1, 2<i<n-k-1, (3.3)

bn kXn- k 1 bn kXn k 1,

where x E/To. This yields

6-- Xn_ k, 60-- q- Xl"
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Let c be the intensity function of the process.
exactly k operating components. In this case,

Then a(r/)# 0 if r/ is a state with

(r/) "(1) --"’" + "(k) an- k"

Therefore,

r0 r0 r0

0 0 0

The last inequality is very intuitive and can be proved using Cocozza-Thivent and
Roussignol [2]. In fact,

r0
an_kE a(r/u)du < qbn- k

0

(3.4)

-0where q is the probability that the process (r/s) starting from state n-k- 1 reaches
state 0 earlier than state n- k. If Yi is the probability that this process starting from
state reaches state 0 earlier than state n- k, then

(a1 -I- b1)yl -4- aly2 bl,

biYi 1 (ai -F bi)Y -+- aiy + O, 2 _< _< n k 2

bn k lYn- k 2 (an k 1 + bn k 1)Yn k 1 O,

and q- Yn- k-1" Using (3.4), we obtain

an-k 1 an-kc
bn_k q Yn_k_lbn_ k

(if k-n-1 takeyl-0). Sincec(r/)-0ifr/#n-k,

and hence

r0 7"0

Eo / a(r/u)du -(1- yl)Zn_k/ o(r/u)d?.t < (1- yl),
0 O

0 (1 yl)(.

Now, let us find _flD E0(cr A or0) by solving the linear system

(aI A- bl)Z1 -4- alz2 1,

bizi- 1 (ai + bi)zi + aizi + 1 1, 2 < < n k 1 (3.6)

bn- kZn- k 1 (an- k + bn- k)Zn- k 1,

where z is the mean first passage time for the (initial) birth-and-death process
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(starting from state i) to subset {0, n- k + 1]. It follows that

fl_D l-o q- Zl

3.2 Numerical results

In all these examples n 6. Consider the following four groups of data.

l.a

1.b

I.C

1.d

case ] 1 2 3 4 5 6
121 122 123 124 /25

3 10 -3 10 -3 10 -3 10 -3 10 -3

1 1 1 1 1
3 10 -3 5.10 -3 10 -2 2.10 -3 8.10 -4

1 5 10 2 8-10 -1

2 10 3 5.10- 3 10 2 2.10- 3 8" 10- 4

1 5 10 2 8.10 -1

3 10 3 5" 10 3 10 2 2. 10 3 8" 10 4

2.a 3

2.b 2

2.C

2.d

1 1 1 ! 1
10 -2 10 -2 10 -2 10 -2 10 -2

1 1 1 1 1
10 -2 10 -2 10 -2 10 -2 10 -2

1 1 1 1 1
3 10 2 5.10 2 10-1 2.10- 2 8.10 3

1 1 1 1 1
3 10 2 5.10- 2 10 1 2.10- 2 8.10- 3

1 5 10 ..2 8.10 1

3.a 3

3.b

4

10-1 10-1 10-1 10-1 10-1

126

10 3

1
10 -3

1
10 -3

1
10 -3

1
10 -2

1
10 -2

1
10 -2

1
10 -2

1
10 -1

1 1 1 1 1 1
2 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1

1 1 1 ..! 1 1
3 10 -1 5.10 -1 1 2.10 -1 8-10 -2 10 -1

1 1 1 1 1 1

In group 1, ./Op_,. < 1.25.10 -3 and-io&;/p-j < 1.25.10 -2 for all/and j. In group 2,
")i/12i < 1.25 -and ,ki/#j < 1.25 lor all and j. In group 3, )i/12j 10- 1

for all and j. In group 4, there exists such that i/#i 1.
Since the components are independent, the underlying Markov process is reversi-

ble and Ay(CXv)- A is an upper bound for ,k(cx3); therefore, the calculation of ,ksup is
useless. Let us introduce quantity 1(cx3) which is the asymptotic failure rate of the
birth-and-death process with transition rates a and bi. This coincides with the true
asymptotic failure rate if h $j and 12i 12j for all i, j; in all other casesthis is an
upper bound of A(c). Notice that if ,k Aj and 12i- 12j for all and j, then c0 and

o are the exact values of E and ES, respectively, and, therefore, o os,p" The
results are listed in the following table.
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data

1.a 5.9582.10-11

1.b 1.9636.10 10

1.c 9.8144.10-14

1.d 1.9623.10 9

2.a 5.5952.10 7

2.b 2.8119.10 9

2.c 1.6147.10 5

2.d 1.8219.10 -6

3.a 3.0335.10 3

3.b 1.6040.10 4

4 3.3541 10 2

,v(OO ,o

5.9641 10 11

1.9682.10 lO

9.8409.10 14

1.9672.10 9

5.6523.10-7

2.8261 10 9

1.6563.10 5

1.8652.10 6

3.3898.10 3

1.6935.10 4

4.3139.10- 2

Pv
rV

1.00.10 -3

1.00" 10 -3

2.31 10 3

6.17.10 -3

2.70.10 3

3.15.10 -3

2.47.10 3

5,75.10 -3

1.02.10 -2

1.03.10 2

5.05.10 3

5.08.10 3

2.58.10 2

6.71.10 -2.38.10 2

7.36.10 2

1.17.10 -1

1.57.10- 1

5.58.10 2

6.02.10 -2

2.86.10 1

30.5

5.9582.10 11

2.7684- 10 s

8.6771 10-11

1.8703.10 s

5.5952.10 7

2.8261 10 9

1.4831.10-4

2.0977.10 4

3.0335.10 3

1.6935.10 4

2.0175.10 1

5.9641 10- 11

2.7854- 10 s

8.7044.10 11

1.8810. lO-S

5.6523.10-7

2.8261 10 9

1.5753.10 4

2.2388.10 4

3.3898.10 3

1.6935.10 4

3.2033.10 1

The upper bound v(CX) is better than )l(cx:)) and V(CX)is a good approximation of
A(cx) in groups 1 to 3 (very good in groups 1 and 2). In group 4, the approximation
is not tight.

If h Aj and #i- #j for all and j, then a good way to find Ay(CX) is to com-

pute A0_ 0/ with
1 Yl an- k 1o0 Yn- k-1 bn_ k

+ X1

4. Systems with Independent Components

4.1 Principle

Consider a system with independent components and general working space which
means that we do not impose specific restrictions on d (such as in the case of k-out-
of-n systems) except for the coherence of the system. But the dynamics of the system
is still described by a Markov process with finite states space and transition rates A.
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Let all the components be operating at time 0.
Denote by C the set of the states with exactly n- 1 operating components. Let

a max E A(rl, ), b min E A(r/, ), (4.1)

_n max{i’i c_ }, n max{i’i o 1, }, (4.2)
where the number n_c + 1 is the order of the smallest minimal outset.

In this section, when referring to relations (3.1)to (3.6), the coefficients a and
b are assumed to be those given in (4.1).

Let
5 Xc,

where xi’s are solutions of system (3.3) with n- k gc and

max a(r)- max A(; P).
n Co n e .AS, n Co

Let t be a birth-and-death process with transition rates given by relations (3.1) and
(3.2). The same arguments as for the k-out-of-n system give

v0 ’0

En / a(qu)du <- En / I(rlu U
_
c <_ <_ -acCi dig)du

0 0

"r0

f _o<_ E I( <_ ,, <_ n)d.
0

-0Let ti, 1 <_ <_ gc-nc + 1, be the mean time for process r/t starting at ---c + i- 1 to
leave interval [_nc, gc]. Then

r0

-0 1 q’Eg
c

I(n-c <- u <- c)du tg
c -n__c + 1 -- q, tl

0
where q’-Yn_

c
1, (q’- 1 if--c- 1),

and yi’s satisfy linear system (3.5) with n-k- _nc. Quantities ti’s are solutions of
the following system

(a_nc + bn_c)tI + an_ct2 1,

bnc_ + i- lti- 1 (an
c_ + i- 1 r- b_c + i- 1)ti zc an_c + i- lti + 1 1, 2 <_ <_ gc n-c,

bnctnc -c bnctnc -c + 1 1.
This yields

e--(tnc_n_c+l +l-q’)q,ti 0 A(C;Z2)a
o + 1 tl(1Yi)q,

(Yl 0 if n_c 1). Let us notice that A(Co; 2) 5/: 0 if and only if nc 1. Finally, we
take

and

where zi are solutions of
max E Cnc

1A(r, ).nCn__c xE +

_.0 ldO nt- Xl,

_D l’o + Zl

the system (3.6) with n-k-_nc and an_c
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4.2 Systems with common mode

Let us return to the previous example but add there a so-called common mode: the
system behavior is just the same as described in Subsection 4.1 but it is subjected to
additional events called the common mode. If a common mode occurs, then the ith
component (if it is operating) can fail with probability Pi independently of other com-
ponents. Let the occurrence rate of the common mode be A. Define p maxiPi, and
denote by the maximum value of the intensity process calculated without the
common mode factor. Let nc and c be the quantities defined in (4.2).

Process -0(r/t) is no longer a birth-and-death process. Let 0 be the transition
-0rates matrix of the process (r/t) without the common mode. The true transition rates

-0matrix 0 of process (r/t) can be expressed in terms of 0 as follows:

(i, 1) o(i, 1),

o(i, + 1) 4(i,i + 1) + A(n- i)p(1 p)n-i- 1,
(i,i + m) ACr_ipm(1- p)n-i-m, 2 <_ m <_ gc- i.

Define D(i, i)- - j:j i[(i, j) and take 5- x, where xi’s satisfy the linear
equations

xo-0, [(i,j)xj- -1 (i>_l).
Let 3

q" Y_nc 1

where yi’s are the solutions of the system

Yo -1, E [(i’j)Yj O (l_<i_<_nc-1), Yi O(n-c <- <- gc)"

We now define ti’s as the solutions of the system

to-O [(i+n_c-l,j)tj- -1 (l<_i<_gc-nc+l).
Then 3

tc n_c + 1
e Ap5 q q,,

Quantities o, 50, and _D can be estimated with the help (1.5), (1.6), and (1.7).

4.3 Numerical results

In practice, the set of failed states is often expressed in terms of so-called minimal cut-
sets. A cutset is a collection of components such that their simultaneous failures im-
ply the failure of the system. A cutset is called minimal if it does not contain smaller
cutsets. Clearly, the knowledge of all minimal cutsets enables us to construct all
failed states.

In the following examples, we consider a system with n=5 components
C1,..., C5, and four families of minimal cutsets:

e {(C1, C2), (C2, C4, C5), (C1, C3, C5)},
e2 {(C2, C4, C5), (C1, C3, C5)},
e3 {(C1, ca, C5), (C2, C3, C4, C5)},
e4 { (C2, C3, C4, C5)}.
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data A1 A2 3 A4 A5 A

Pl /t2 /t3 /t4 5 6

Pl P2 P3 P4 P5
1 Cl 10 -3 10 -3 10 -3 10 -3 10 -3 0

1 1 1 1 1
0 0 0 0 0

2 2 10-3 10-3 10 -3 10 -3 10 -3 0

1 1 1 1 1
0 0 0 0 0

3 C3 10-3 10-3 10-3 10-3 10-3
1 l l 1 1
0 0 0 0 0

4 C4 10-3 10-3 10-3 10-3 10-3
1 1 1 1 1
0 0 0 0 0

5 1 10-2 10-2 10-2 10-2 10-2
1 1 1 1 1
0 ,0, 0 0 0

6 E4 10 -2 10 -2 10 -2 10 -2 10 -2

1 1 1 l l
0 0 0 0 0

7 {1 10-1 10-1 10- 10-1 10-1
1 1 1 1 1
0 0 0 0 0

8 4 10 1 10- 1 10 1 10 1 10 1

1 1 1 1 1
0 0 0 0 0

9 C1 10-3 10-3 10-3 10-3 10-3
1 1 1 1 1

0.1 0.1 0.1 0.1 0.1
10 (1 10 3 10 3 10 3 10 3 10 3

1 1 1 1 1
0.5 0.5 0.5 0.5 0.5

11 1 10-3 10-3 10-3 10-3 10-3
1 1 1 1 1
1 1 1 1 1

12 1 10-3 10-3 10-3 10-3 10-3
1 1 1 1 1
1 1 1 1 1

0

0

0

0

0

0

10-5

10-5

10-5

10 -4
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data C A1 A2 A3 A4 A5 A

13

14

15

16

17

18

19

2O

21

22

23

24

121 122 123 124 /25

Pl P2 P3 P4 P5

(1 10-3 10-3 10-3 10-3 10-3 10-3
1 1 1 1 1
1 1 1 1 1

(I i0 3 i0 3 I0 3 i0 3 i0 3 i0 3

1 1 1
O.,5 O.5 0.5

1 10-3 10-3 10-3
1 1 1

0.5 0.5 0.5
(1 10 -3 5.10 -3 10 -2

1 5 10
0.5 0.5 0.5

(1 10 -3 5.10 -3 10 -2

C1

1 1
0.5 0.5
10-3 10-3 10 -2

1 1
0.5 0.5
2.10 3 8.10-4 10-2

2 0.8
0.5 0.5
2.10 3 8.10 -4 10 5

1 5 10 2 0.8
0,5 0.5 0.5 0.5 0.5
10 3 5.10 3 3.10 3 2.10 3 8.10 4 10 2

1 5 1 2 0.8
0.5 0.5 0.5 0.5 0.5
10 3 5.10 3 3.10 3 2.10 3 8.10 4 10 5

1 5 1 2 0.8
0.5 0.5 0.5 0.5 0.5
10 3 5- 10 3 3- 10 3 2.10 3 8.10 4 10 2

1 5 1 2 0.8
0.5 1 0 0.25 0.75
10 3 5" 10 3 3" 10 3 2. 10 3 8. 10 4 10 5

1 5 1 2 0.8
0.5 1 0 0.25 0.75
10 -2 5-10 -2 3.10 -2 2.10 -2 8.10 -3 10 -2

C1

1 5 1 2 0.8
0.5 1 0 0.25 0.75
10-2 5.10-2 3.10-2 2.10-2 8.10-310-5

1 5 1 2 0.8
0.5 1 0 0.25 0.75

C4 10-2 5.10 -2 3.10 -2 2-10 -2 8.10 -3 10 -2

1 5 1 2 0.8
0.5 1 0 0.25 0.75
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data C 1 ’k2

Pl P2
25 C4 10-2 5.10 -2

1 5
0.5 1

#3

3.10 -2

4 A5 A

P4 P5
2.10 -2 8.10 -3 10 -5

2 0.8
O.25 O.75

The following table contains the results of our calculations. If a system consists
of independent components (see lines 1 to 8 in the table above and below), then we

estimate rV and Osup by formulas from paragraph 4.1. In the absence of common
mode, Ay(OC)- Ao is an upper bound for (c) and therefore, no need to fill the
column Asup" In the case of common mode, we use formulas from paragraph 4.2.

data

1 2.0000.10 6

2 5.9790.10 9

3 2.9935.10 9

4 3.9819.10 12

5 1.9986- 10 4

6 3.8310.10-s

7 1.9094.10 2

8 2.6356.10 4

9 2.1223- 10 6

10 5.7632.10 6

11 1.2000.10- 5

2.0020.10 6

5.9820.10 9

2.9950.10 9

3.9840.10 12

2.0183.10 -4

3.8499.10 8

2.0690.10 2

2.7322- 10 4

2.1244.10 6

5.7699.10 6

1.2015.10 5

PV
rV

9.99.10 4

3.70.10 3

5.02- 10 -4

2.18.10 -3

5.01 10 4

2.18.10 -3

5.30.10 4

5.4.10 -4

9.85.10 3

4.05.10 -2

3.37.10 3

5.94.10 3

8.35.10 2

9.29..10-1
3.37.10 2

7.28.10 2

1.00- 10 -3

3.72.10 3

1.16.10 -3

3,74.10 -3

1.28.10 3

3.76.10 3

"sup

2.1323.10 6

5.7915.10 -6

1.2060.10-5

Osup
2.0020’" 10 6

9.9701 10 6

5.9820.10 9

1.9920.10 s

2.9950.10 9

1.9920.10-s
3.9840.10-12
9.9552.10 12

2.0183.10 -4

9.7069.10 4

3.8499.10 s

9.5714.10 s

2.0690.10 2

7.5776- 10 2

2.7322.10 4

7.0000.10 4

2.1243.10 6

1.8408 10 5

5.7655.10 6

2.2066.10 5

1.2002.10 5

2.8309.10 5
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data

12 1.0200.10 -4

13 1.0020. I0 3

14 3.7848.10 4

15 3.7812.10 3

16 3.7887.10 3

17 9.7547.10 -6

18 3.7900- 10 3

19 9.7508- 10 6

20 5.9540.10 3

21 1.1926.10- 5

22 6.6055.10 3

23 5.8590- 10 4

24 6.5064.10 5

25 3.1126.10 7

1.0214.10 4

1.0033. I0 3

3.7907.10 4

3.2978.10 3

3.8221 10 3

9.8024.10 6

3.8163.10 3

9.7911.10 -6

6.0009.10 3

1.1978.10- 5

6.9191.10-3

6.0980.10 4

6.5859.10 5

3.1401 10 7

PV
rV

1.32.10 3

4.09.10 -3

1.33.10 3

7.80- 10 3

1.56.10 3

i.40.10 -3

4.40.10 -3

2.27" 10 2

8.83.10 3

5.55.10 2

4.89.10 3

3.35.10 2

6.95.10 3

3.87.10- 2

4.14. i0 3

1,73. lO 2

7.88. 10 3

5.80.10 2

4.39.10 3

1.73- 10- 2

4.75.10 -2

3.12.10 1

4.08.10 -2

2.54.10 -1

1.22.10 2

7.56.10 -.2
8.82.10 3

3.99.10 2

1.0255 :"10 4

1.0112. i0-3

3.8112.10 -4

3.8841.10 3

4.0342.10 3

1.0131.10

3.9640.10 3

9.9608.10 6

6.3491 10-3

1.2186.10 5

9.0785.10 3

7.6474.10 4

7.0837.10 5

3.2655-

1.0200.10 4

1.1868.10 4

1.0020.10-3
1.0224.10 3

3.7848.10 4

3.9856.10-4
3.7813.10 3

3.8588.10 3

3.7889.10 3

4:7521. !0,3
9.7799- 10 6

5.8858. !0 4

3.7902.10 3

4.1912.10 -3

9.7759.10 6

1.9870.10 4

5.9540.10 3

6.4811.10 3

1.1951 10-5
2.0096.10 4

6.6331 10 3

2.7801 10 2

6.0953.10 4

1.9121.10-2
6.5213.10-5
6.6217.10 3

3.1347.10 7

3.3694.10 3

One can see that Av(C,o approximates A(cx) to a good accuracy and that rV is an
accurate estimate of PV in all cases except for 7, 22, and 23. In all cases, A is a

better bound than the Vesely failure rate Av(OC). The smaller ratios of failure rates
to repair rates are and the larger the set of good states is, the better are the
approximations. When failure rates are small in comparison with repair rates, the
approximation is good, since the first regeneration time is small and processes
(0), (’It) and (h) are close to each other. The reason of the influence of the size of
set % will be explained in the following section (see Remark 5.1).



42 CHRISTIANE COCOZZA-THIVENT and VLADIMIR KALASHNIKOV

Remark 4.1: All systems considered in previous examples are NBU (see Cocozza-
Thivent and Roussignol [1]) and therefore,

R(t) > e-()t.
Because of this, our estimates of A(cx) lead to pessimistic bounds of the system
reliability.

5. Semi-Markov Process

5.1 An alternative renewal process

We have already seen (Remark 1.3.13) that the Vesely failure rate of a semi-Markov
process is equal to 1/MUT. We now consider an alternative renewal process, which
can be regarded as a semi-Markov process with two states: 1 (operating state) and 0
(failed state). Denote by F the distribution function of the sojourn time in state 1,

oo F’(t)by m-f (1-F(t))dt its mean value, and by h(t)-i F(t)
its hazard rate

0
function. Assume that there exists the limit h(oc)- limt__,ooh(t cx. Then the
asynptotic failure rate and the asymptotic Vesely failure rate func-
tions for such a system are equal to

A(oc) h(oc), and AV(OC l_,respectively. (5.1)
If AV(CX is regarded as an estimate of A(oc), then the accuracy of this estimate
depends (in general) on distribution function F. Indeed, in the exponential case, h is
constant and A(cx))= Av(C)-- (t). But if, say, F is a gamma-distribution with the
density

F’(t) 1 ta- 1 x/b
r(a)b,

e
then

1 Av(C A(ec) 1A(c) , Av(C --, A(oc) a 1

and the accuracy depends on how far is the gamma-distribution from an exponential
distribution.

Although we cannot use our method because process (r/t is not regenerative, this
does not matter, since we obtain accuracy estimates directly from (5.1).

lmark 5.1: Let us return for a while to the Markovian case. When failure
rates are small in comparison with repair rates and when set J is large, then the pro-
bability for Markov process (tit) to return to the "perfect" state before entering into

is high. Because of this, the sojourn times distributions in set Al are close to expo-
nential distributions (see Keilson [4]), and it is intuitively reasonable to consider that
the sequence of successive sojourn times of process (rls) in sets Al and is approxi-
mately an alternative renewal process with an exponential distribution function F of
interrenewal times. This can explain why the approximation of A(oc) by Av(CX
(and even of A(t) by Av(t)) is good in this case.

5.2 A simple example of a semi-Markov process

Let a facility have four operating states el,e2, e3, e4 and two failed states e5 and e6.
The initial state is e1. When leaving state el, the facility can reach one of the three
following states with probabilities Pl, ql, and rl, respectively, (Pl + ql + rl 1):
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state %; this can be treated as if a minor failure would have occurred
which was detected and the facility had been repaired;
state e3; this means that a minor failure has occurred but it was not
detected;
state e5; the system fails.

After this, the system behaves as follows. Upon repairing a minor failure, the facili-
ty comes back to state e1. From state e3, the facility can go either to operating
state e4 (if safety system has worked) with probability P2 or to failed state (:6 with
probability 1- P2" State e4 leads to state %.

Let us describe the facility’s behavior by a semi-Markov process with the transi-
tion rate functions including only non-zero terms as follows

A(el,e2, s) PlAl(S), A(el,e3, s) ql.l(S), A(el, e5, s) rill(S),

A(e3, e4, s) P2A2(s), A(e3, e6, s) (1 p2)2(s),

A(es, el, S #l(S), A(e2, el,S)- t_z2(s),A(e4, e2, s) #3(s), A(e6, e2) /.t4(s),
and apply Proposition 1.5.2 to Markov process r/- (rlt, Yt) where Yt is the elapsed
time of the process in its current state at time t. Using Proposition 1.2.5, one can see
that non-zero terms of transition rate functions of semi-Markov process (r/s) have the
form

A(el,e2, s)- pl,l(S), A(el,e3, s)- qll(S),

A(e3, e4, s) P2A2(s), A0(e2, el, s) -/_t2(s’), A(e4, e2, s) -/.t3(s ).
Process (r/f)- ((s, ys))is Markovian and

rll(yt0),
a(r/t, yt) A(Tt, V, yt)

(1 p2)A2(Yt),

0if Tt el,
oif t e3"

rll(S)P(W1 > s)ds q-(Pl -{- ql)(1- P2) A2(s)P(W3 > s)ds
0 0

r1 q1(1-- P2)
Pl q- ql (Pl "+- ql)P2"

Quite similarly, w3

max(E1, E") _< Ef
0

It can be easily seen that

max(ES10, ES) < E(W2 + W3 + W4),
ql E(W3+ W4).ES EW1 + EW2 q-

Pl q- ql

(1 V2)A2(s)ds
1--p2
P2

Let W1,W2, Wa and W4 be r.v.’s with hazard rates (Pl +ql)A1, /t2, P2A2, and #3
respectively. Evidently the sojourn time of the process (/s) in state e has the same
distribution as Wi. Process (r) is regenerative with regeneration state e1 and

l?1
ql (1 p2)2(s)dsE- E rlAl(S)ds + Pl + q

o o
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Recall that r is the first entrance time of process (rs) into - {e5;e6}.
the recurrence time to state e1. Then

/?D E/ exp a(’u)du dt- E(a A a0)
0 0

ql EW3 +
qlP2 E(W4EW1+ + ql Pl + q + W2)"

Proposition 1.5.2 yields

where

#V -- ee eW D], AO--D’

Let r0 be

5.3 Numerical results

Let us consider the example described in Subsection 5.2. With m denoting the mean

sojourn time in state e (1

_ _
6), we set

1 1m1 1, m2 200’ m3 1, m4 100’ m5 -.’ m6 1

and suppose that W{ (the sojourn time of the process (t) in state e{) has the Erlang
distribution with parameter k (and mean mi) (that is, W can be treated as a sum of
k i.i.d.r.v.’s with common exponential distribution having parameter ki/mi).

Case 1. Let
Pl 0.5, ql 0.4, r1 0.1, P2 0.99.

Then

and

Then

Av(C 7.3840.10-2 rv 9 19.10-2

Asup 8.0624.10-2 Ao 7.9511.10-2

for k1- 1, k2-1,k3-1,k4-1,k5- 1,k6- 1

A(c) 7.2432.10- 2, PV 1.94.10- 2;
for k1- 1,k2-5,k3-1,k4-10,k5-7,k6-6

A(c)-7.2432 10-2 Pv 1.94.10 2,
for k1-3,k2- 10, k3- 12, k4-50,k5- 10, k6- 15

A(c) 7.4459.10- 2
PV 8.32.10- 3.

Case 2. Let

Pl 0.1, ql 0.5, r1 0.4, P2 0.99.

AV(OC 2, 6858.10- 1 rV 3.85.10- 1
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and

Then

Assp 3.7204.10- 1 Ao 3.6557.10-1,

for kI 1, k2 1, k3 1,k4 1,k5 1, k6 1

A(oe) 2.4331.10-1 Pv 1 04.10-1.
for k1 1, k2 5, ka 1, k4 10, k5 7, k6 6

A(o) 2.4332.10-1 PV 1.04.10- 1.

for kl- 3, k2 lO, ka 12, k4 -50, ks lO, k6 15

A(oe) 2.7024.10-1 Pv 6 15.10-1
Case 3. Let

Pl 0.1, ql 0.5, rI 0.4, P2 0.99.

Av( 2.9851.10-1 rV 5.91-10-1

Asup 4.7494.10-1 "0- 4.1115" 10-

for kI 1, k2 1,k3 1,k4 1, k5 1,k6 1

A(oc) 2.7586 10- 1 pv-8.21"10 2,
for ]1- 1,]2- 5,]3- 1,]4- 10,]%- 7, k6 -6

A(c) 2.7586.10-1 flu- 8.21.10- 2.

for kI 3, k2 10, k3 12, k4 50, k5 10, k6 15

A(Cx) 3.1128. 10-1 flv- 4 10.10- 2

Comments: The results displayed above show that the influence of the order of
the Erlang distributions on reliability characteristics is minor. But our estimate is
very sensitive to the value of P2" From other examples, one can see that the sensiti-
vity with respect to Pl, qa, and r is also high. This can be seen from equation (5.2).
In our examples, (c) _< v(CX) for small values of ki’s but not for large values. In
addition, the bounding by A0 gives better results than by sup"
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