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1. Introduction

In this paper, we consider various examples to gain a more precise understanding of
the constructions and estimates developed in the first part of this work [3]. These
examples are chosen because of their importance in reliability area. Our purpose is
two-fold: (1) to illustrate real accuracy of the proposed bounds and depict their
domain; (2) to show the simplicity of corresponding calculations for their immediate
applications. We suppose (perhaps, self-sufficiently) that the reader is familiar with
the results of [3]. Moreover, we will often refer to some relations and assertions from
[3]. In this case, if we refer to Corollary 5.4 proved in [3], then we will write
Corollary 1.5.4.  Similarly, if we refer to equation (5.1) from [3], then we will write
(I.5.1).  Of course, similar agreement remains true for other references from [3] as
well. In addition, we preserve some basic notations from [3].

Recall that the principal object of our investigation is a random process (7))
describing the dynamics of a system; its state space E is partitioned into two subsets:
E = M UP, where M is treated as a subset of “good” (or operating) states and % as
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a subset of “bad” (or failed) states. Let o =inf{s:n, € P} be the first break-down
time of the system. The failure rate function for process (n,) is defined as

Plo<t+A|o>t)
X (1.1)

)\(t) :giLno
and the Vesely failure rate as

. P, A€P|n €M)
Ay(t) = lim, Lt X t : (1.2)

In Proposition 1.3.3 we introduced a quantity A° which can be regarded as the failure
intensity prov1ded that the states of (7,) follow the stationary distribution of an auxil-
iary process (n9) (see (I.3.9)). We are interested in limiting values A(co) and )\V(oo)
of the above functions. = More precisely, we are looking for accuracy estimates in
approximations of A(co) by Ay(co) and by A% It turned out that, in many cases
A(c0) < XO (see Proposition 1.3.3). Hence, the following accuracy estimates are of
interest:
D) =X g 2= X(oo) s

Py = (o) y P ——_A(&T' (1.3)
For the case of special interest, when (7,) is a Markov process with a finite state
space, Corollary 1.5.4 gives accuracy estimates in terms of the following quantities

¢ = bmaxa(n), (1.4)

€= T%+c, (15)

o= T ¢oA°(£(())()(Zg()n, my (-0
bo=Taoot | >, OO an

where A(z j) is the intensity for Markov process (7,) to jump from state i to state j
and A°(i, j) = A(4, ) for all 4,5 € M. Denote upper bounds of py and A(oco) by

ry = ef(f -|--(-Sﬂ€—g), (18)

Asup = (I +ry)Ap(c0), (1.9)

respectively (see Corollary 1.5.4). Following Section 1.5.1, let
o_ 6E£/~0 + E€*/2E¢
— E€*/2E¢

be an upper bound of pO in the case where E€ and E¢? can be calculated explicitly
(see (1.5.7)), and let

(if 1 — E€2/2E€ > 0) (1.10)

o _ %
Noww =5 (1.11)
be an upper bound of X° (see (I.5.1)).

The paper is organized as follows. In Section 2, we consider a set of simple re-

dundant systems consisting of three components under Markov assumptions and var-
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ious types of redundancy. Section 3 is devoted to so-called k-out-of-n systems (also
under Markov assumptions) consisting of n components such that the system is opera-
ting if and only if at least k£ components are operating. A generalization of this type
of systems is considered in Section 4 where Markov systems with independent com-
ponents are studied and where we do not impose specific restrictions on set M except
for the system coherence. In Section 5, we relax the Markov assumption and consider
semi-Markov models. All considerations are demonstrated by corresponding numerical
results.

2. Simple Examples

In this group of examples, we show how to estimate the parameters involved in
Corollary 1.5.4 and to obtain the accuracies of the bounds derived for A(co). In all
examples, we deal with a system consisting of three components, designated by C1,
C2, and C3. Further restrictions will be imposed in the upcoming subsections.

2.1 Passive redundancy

Assume that components C'1 and C3 can be in two states: “operating” denoted by 1
(resp. 3) and “failed” denoted by 1 (resp. 3). Component C2 is redundant with
respect to C1. Normally, C2 is waiting (state 2, ), but when C1 fails, C2 tries to
replace the failed component. The replacement occurs with probability 1 —+, 0 <
v <1, and then C2 enters the operating state denoted by 2; otherwise, C2 enters the
failed state 2. Upon repairing C'1, component C2 (if it is not failed) returns to the
waiting state. The failure rate of Ci is A; and its repair rate is u;. Component C2
cannot fail while it is waiting.
The dynamics of the system can be described by a Markov process with 8 states:

eo = (12,,3), e; = (123), ey = (123), e5 = (12,,3), e, = (123), e5 = (123),
eg = (123), e; = (123).
Transition rates of the first four states are given as follows:
A(egrer) = (L= 7)A1, Alegy 3) = Az; Alegs €6) = Ay,
Aeq,eq) = py, Aleg,e5) = Agy A(eg,e6) = Ag,
A(egs €0) = gy Aleg eq) = Az, Alegs66) = Ay,
A(es, eg) = p3, Aeg,e5) = (1 —7)Ap, Ales e7) = Ay

The rest rates can be written easily. Let us consider three different modes for the
subset of operating states:

Moy = {egreqse0}, Moy = {eg,€1,€9,€5,64}, Moy = {€g,€1,€9,€3, €5, 65}

Mode Ab; corresponds to the situation where C3 is in series with the other compon-
ents C'1 and C2, in the sense that the system is operating if C3 is operating and
either C'1 or C2 is operating. In mode Ab,, the system is operating if C'l1 is operating
or if C2 and C3 are both operating. Mode Mbg has no clear meaning, in general; it
is introduced just to test our methods and to compare this case with the case of
independent components.

Let the system be in the “perfect” state ey = 0 at time 0.



24 CHRISTIANE COCOZZA-THIVENT and VLADIMIR KALASHNIKOV

Mode Ab;. Matrix A9 has the form

(=N (-7 0
A = 5 — M 0
Ko 0 — H2

and non-zero values of the intensity function are listed below:
aey) = A(eg; P) = YA, + Ag,a(eg) = A(e; P) = Ay + Az, a(ey) = Aey; P) = A + Ag.
Let

-
0
0
€y = En/ a(ny,)du, 6, =E, T, (2.1)
Then 0
Ay + A A+ A YA+ Ag
g ST T Mg 0 0T ST (Toq, T e
=1 =1 =1 41
631 CE 662 T B2 660 T (A=-7)N Y
and
1 (1-=7)) 1
BN =5 VTR mth Ty
So,

€ = max(e, €, ), €g=¢,, 6 =max(é, ,6, ), 85="0,, Bp=E(ocAay),
and, by (I.5.1) 2 0 v 0

Ao = ffg.
66
0
In order to find the accuracy of relation (1.5.7), we have to calculate moments of
the r.v.€. It can be done by using the equality

E= (M +23)Wo+ (A +A3)Wy,

where W, and W, are two independent r.v.’s exponentially distributed with para-
meters (1 —y)); and p,, respectively. This yields

o Secolbest E£?/2¢,

0 if E¢? > ey

1-E¢? /2,
Ee? = (AL +25)7 | Qg +29)° L
(1—-7)°A I ‘0
Mode Mb,. Matrix AD has the form
—((L=7)A1+23) (1= 0 A3 0
m — 0 0 0
A0 = ™ 0 — (pg + A3) 0 Ag
M3 0 0 — 3 0

K 0 0 3 Mo — (Hg + 13)
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and non-zero values of the intensity function are
aleg) = 7Ay, ale) = Ay + A3, aley) = alez) = aley) = Ay

Let ¢, and 6, be as in (2.1). In order to estimate them we can use (1.4) through
(1.7) and Lemma 1.5.5. However, a better result can be achieved if we estimate § e

and €e, separately from 66:’ and ¢, for ¢ > 2. In fact,

1
1
e = 'I_Tl*, 661 = (/\2 + A3)6el'

Quantities 6, , ¢ > 2, can easily be found as the solution of three linear algebraic equa-
tions. But we prefer to use Lemma 1.5.5 to show how it works and to prove its
accuracy.

Take the test function with
V(eO) =0, V(e2) = V(63) = a, V(€4) =a+b.

Conditions (I1.5.26) yield
—ppat+Ap < =1, —pza< =1, —(pp+pz)b< -1

Let us choose 1 11 A
_ _ 1 3
b= Mo + p3’ a4 max(“3’ﬁé(1+/12+ﬂ3)>’

§= max(éel,a +b), €= max(eel,)\l(a + b)),

and
™ (L=7)e, N X A

€n — —.

O =MM A U=+ (=1 + A H3

Parameters 6, and (3, are given in (1.6) and (1.7).
Mode Mb;. Matrix AQ has the form

A =
(=) (=1 0 Ay 0 ™
pr = A +A) 0 0 A A,
Mo 0 — (g + M) 0 0 At
K3 0 0 —(ug+(1=7)A) A=7X 0
0 13 0 H = (1y + p3) 0
0 Hy I 0 0 = (g + 1)

and non-zero values of the intensity function are
aeg) = Ag, alez) = 1Ay, ales) = Ay, aeg) = Ag.

For estimating, let us employ (1.4) through (1.7) and Lemma 1.5.5. Take the test
function with

V(ep) =0, V(el):ﬂll(lJrAzZAg), V(e) =V(e) +H(i €{2,3,56),  (22)
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where
p = min(py, pig).

Then ' )
23 AZ 1

Parameters ¢, and 3 can be estimated with the help of (1.6) and (1.7).
2.2 Independent Components
Assume now that the three components are independent.

Mode ;. All the characteristics can be calculated explicitly:

—max(-L L) = M_ﬁi_{g)
6 =ma #1,#2), e_max< T, ,

__1 ()\3 ’\1()‘2+’\3)+)‘2(’\1+’\3)>’
2

OTX + X, 2 o
_ 1 _’\_1 ﬁ _ 1 AMoN
EOTO—A1+A2(1+u1+u2) EBolo Noo) =52, 7%, (1+u1+
Mode b, We estimate 6 similarly for the passive redundance case. Take

6 = max(1/pq,a+b) with
S B 1 A3 )1 A
= L a= max( (1+ﬂ2+ﬂ ) (1+H2+#3))’

A+ A
€=¢€y= max( 2:1 3 dmax(A; + Ag, A +)\2)),

Formulas (1.6) and (1.7) yield

S W (R W W
q=Pp=3732,7% 1+#1+u2+u3)'

Mode M;. The steps are the same as in the passive redundance case. Let us take
the following test function

V(eo) =0, V(el) = V(ez) = V(e3) =a, V(eG) = V(e7) =a+b,

where

1 Ayt As) 1 M 1 _ o
Thei_max(” (1+ﬂ1+ﬂ)’ﬁ 1+N1+E b= Byt B p = min(py, 1p).

d=a+b, €=c¢y=Emax(AyA3).

Quantities §; and B can be estimated with the help of formulas (1.6) and (1.7).
The result is the same as in the case Ab,.

2.3 Numerical Results

The Vesely failure rate is supposed to approximate the true failure rate to a good
accuracy if “failure rates of components are small in comparison with their repair
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This is examined in the numerical calculations. Consider the following five
groups of figures.

M Hy Ay Ho Az K3 Y
l.a 10 | 104 10| 10| 1 [5-10% 0
1.b 10 1 104 100 1011 15-10%0.75
2.a 10 | 10*| 100 |2-10°| 1 |5-10%0.05
2.b 10 | 10%1100 [2-1051 1 [5-10%0.2
3.a 10 | 103| 10 {2-103| 1 |5-10%0.05
3.b 101 1081 1 |5-10%2110  |10% [0.05
4.a 10 | 10%*| 100 [2-10%]0.02 [100 [0.05
4.6 10.02 1100 [ 100 [2-10%[10 [10* 10.05
5.a 10 | 10%|10~3] 1 1 |5-1030.05
5.b 115-103 10 | 104 |10-3] 1 0.05

In groups 1, 2, 4, and 5 X;/p; < 10 =3 for all i A/ < 10~ 2 in group 3. In addi-
tion, )‘z’/l‘j <2-1073 in group 1 and Ai/”j <2-10~2 in groups 2 and 3 for all 7 and
J; in group 4 and 5, there exists a pair ¢, j such that X, = I and A; = 10uj correspon-
dingly. The results are contained in the following table where pas.red. means passive
redundancy, and ind. means independent case. See (1.3) to (1.11) for other notations.

data | mode Ao0) Ay (00) Py ry sup
0 0
A p° 0 Asup
La | M, 1.0100 1.0100  |9.86-10~6|1.21-10 73 1.0112
pas. 1.0100  |9.86-1076(1.11-107! 1.0100
Moy 1.2968-10 72 [1.2984-10~2|1.20- 10 ~3|2.68-10 ~3| 1.3019 - 10 ~ 2
1.2984-10~211.23-1073]1.24.10 3] 1.2984 .10~ 2
Moy 12.9941-107°(2.9949-10° |2.56-10~*|3.02-10 ~3| 3.0040-10 ~©
2.9956 -10~5 |4.78 .10~ 4 3.2985-10 2
la | My, 1.0199 1.0200 |1.95-107°%|1.21-10 73 1.0212
ind. same same 1.0200
Moy 2.2926-10 72 2.2952-10 72 |1.13-10 ~3|5.39-10 = 3| 2.3075-10 ~ 2
same same 1.1181-10~1!
Moy [2.2923-10 73 |2.9964-10 73 |1.36-10 ~3{2.69-10 3| 3.0045-10 =3
same same 5.5905 - 10 ~ 2
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data | mode A(o0) Ay (c0) Py Ty Asup
AO PO T‘O )\gup
1.b Moy 8.5006 8.5025 2.20-10~%{4.85-10 3 8.5437
pas. 8.5006 1.84-10~8] — — — 8.5006
Moy 7.5014 7.5036 3.00-10~4|8.98-103 7.5710
7.5014 7.40-1078| — — — 7.5014
Moy [2.2459-10 73 |2.2483-10 73 | 1.09- 10 ~3|3.02- 10 ~3| 2.2551.10 3
2.9482-10~311.03.10~3 3.2997.10 2
1.b Moy 1.0199 1.0200 1.95-1075/1.21-10 3 1.0212
ind. same same 1.0200
Moy 12.2926-10722.2952-10 72 |1.13-10 ~3{5.39 - 10~ 3| 2.3075-10 =2
same same 1.1181-10"1
Moy 12.2923-10732.9964-10 73 [1.36-10 73| 2.69-10 ~3| 3.0045-10 =3
same same 5.5905-10 ~ 2
2.a Moy 1.5935 1.5991 3.52-10 ~3|1.04.10 2 1.6157
pas. 1.5944 5.83-10~411.89-10~1 1.5944
Moy 15.9631-1071 6.0199-10 "1 [9.52-1073|1.03-10 ~?| 6.0821-10~*
5.9726-10~111.59-10~3/5.19-10~ 2| 5.9726-10 !
Moy 1.2203-107*|1.2279-107* |6.27-10~>|3.12-10 ~?| 1.2663-10 ~*
1.2217-10-411.15-10~3 3.3184.10~3
2.a | My 1.1039 1.1048  |8.94-10~*{1.03-10~2 1.1162
ind. same same 1.1048
Moy |1.0681-1011.0782-10 71 |9.46-10 73| 2.36 - 10 ~ 2| 1.1036-10 ~!
same same 2.4985 .10~ 1
Moy 12.0094-1072|2.0486-10 72 |1.95-10 72| 2.82-10 =% 2.1064-10 2
same same 2.9565
2.b Moy 3.0776 3.0969 6.29-10~3|1.06-10 2 3.1298
pas. 3.0783 2.47-10~4]6.01-10~1 3.0783
Moy 2.0799 2.0995 9.40-10~3|1.07-10 2 2.1220
2.0807 3.74-10~4]2.87-10~1 2.0807
Moy [4.2702-107414.2978 .10 ~* |6.47-10 ~3|3.12- 10 ~ 2| 4.4320-10 ~*
4.2730-10 "4 6.62-10 ~ 4 3.3189 .10 1
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data | mode A(o0) Ay (o) 2% Ty Asup
0 0
A p Nup
2b | My 1.1039 1.1048  |8.94-10~* 102 1.1162
ind. same same 1.1048
Moy |1.0681-10 1 |1.0782-10~119.46-10 3 -10~2| 1.1036-10 !
same same 2.4985-10 ¢
Moy 2.0094-10 =2 2.0486 - 10~ % |1.95-10 ~ 2 107 2| 2.1064-10 ~2
same same 2.9565
3.a Moy 1.5886 1.5941 3.45-103 102 1.6148
pas. 1.5894  [5.20-10~4 10-1 1.5894
Moy 6.1606-10 "1 [6.2224-10 1 {1.00-10 2 10~2| 6.4039-10 1
6.1740-10~1 |2.18.10 =3 1021 6.1740-10 1!
Moy |1.7637-10 3 | 1.7693-10 =3 |3.18-10 =3 10~ 2| 1.8262-10 3
1.7668-10 =3 1.75-10 =3 3.2861-10~1
3a | My 1.1942 1.1961  [1.56-1073 1072 1.2109
ind. same same 1.1961
Moy |2.2282-1071[2.2524.101[1.09-10 2 1072} 2.3868-10 1
same same 1.1014
Moy [2.9250-10 72 [2.9644-10~%|1.35-10 2 .10~ 2| 3.0505-10 ~ 2
same same 5.5068 .10 =1
3.b Moy 10.505 10.511  [6.12-10~4 102 11.433
pas. 10.505 2.20-10~7 — 10.505
Mo, 16.8920-10 1 16.9889-10 1 |1.41-10 2 102 7.1949-10 1
6.9103-10112.65.10 =3 10~2 6.9103
Moy |1.4781-10 72 [1.4979-10 2 |1.34-10 2 10 72| 1.5473-1072
1.4978-107211.34.10 2 5.9276-10"1
3.b Moy 10.029 10.030  |3.93-10°° 1072 13.014
ind. same same 10.030
Moy [2.2282-10 71 |2.2524-10 1 [1.09-10 2 10~ 2| 2.3868 - 10 ~ 1
same same 1.1014
Moy 12.9250-10 =2 |2.9644-10 =2 |1.35-10 =2 10~ 2| 3.0505-10~*
same same 5.5068 - 10 ~*
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data | mode A(o0) Ay (00) Py Ty Asup
AO PO 1"0 ’\.(s)up
4a | M, |6.1351-1071(6.1912-107 ! [9.15-1073|1.02-10 = 2| 6.2541-10 !
pas. _16.1444-10~7111.51-10735.97-10 72| 6.1444-10 !
Moy 5.9524-107116.0102-10 71 |9.70-10 73| 1.17-10 " 1| 6.7165-10 ~*
5.9633-10-'11.83-10~316.39-10~2| 5.9633-10 1!
Moy [1.1805-107*|1.1986-10 4 |1.53-10 72|  3.12 4.9351-10 4
1.1894-10~*17.49-10=3] 2.99 10.209
4a | My |1.2386-1071|1.2484.1071|7.97-1073|{1.01-10 2| 1.2611-10 !
ind. same same 1.2484 .10~ 1
Moy [1.0567-10 71 |1.0684-10 71 |1.10-10~2|  6.95 8.4962-10 !
same same 120.94
Moy [1.0004-107%]1.9996-10729.99-10" |  5.86 1.3722-10 1
same same 111.03
4b | My, 10.010 10.021  |1.05-10~3| 162.07 1634.1
pas. 10.020  {9.49-10=4] — — — 10.020
Moy [1.0961-107%]2.2981-10~2| 1.10 3.31 9.8938 - 10 ~ 2
2.1894  19.98-10~1') — — —  12.1894.10~?2
Moy 12.1785-107°(2.2013-10 75 |1.05-10 "2  3.12 | 9.0778-10~°
2.2002-107°19.95-1073] 2.9 10.219
4b | M, 10.010 10.020  [9.98-10~%  3.64 46.45
ind. same same 10.220
Moy [1.0490-107%(2.1993-10 2| 1.10 6.93 1.7449-10 1
same same 120.82
Moy [1.0396-10 71 |1.0484-10 1 |9.50-10 73| 6.01 | 7.3489-10*
same same 112.12
Sa | My 1.4995 4.6620 2.109  |7.63-10° 3.5-10°
pas. 1.4995  |1.57-10~8] 1.97 1.4995
Moy 5.0237-1071 | 3.6639 6.29 2.33-10° 8.53-10°
5.0237-10~117.21.10-%|3.18.10~ '} 5.2837-10~ 2
Mo |2.1909-1071 |3.3314-1071 [5.21-107 1|  32.60 11.195
3.3314-1071 5211071  32.58 10.989
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data | mode A(o0) Ay (o) 2% Ty Asup
A0 p° 0 /\gup
ba | My 1.0009 1.010 9.06-10~3|7.25 - 10° 7.32-10°
ind. same same 1.010
Moy [3.9015-1073|1.2974-10~2 | 2.33 1.03-10° 6.63 - 10°
same same 107.9
Moy 14.9997-10~4[9.9900-10=%{9.98-10" 1| 327 | 3.3627-1072
same same 10.99
5.b | My [5.2886-107215.2957-107%(1.33-1073|2.02-10 = 3| 5.3064-10 2
pas. 5.2890-10 2 |7.10-10 =5]5.68 - 10~ 2| 5.2890-10 2
Moy |5.2373-10 72 [5.2904-10%|1.01-10 "%  2.87 2.0474-10 1
5.2837-10 "% 8.86-1073]1.34.10 "] 5.2887 .10 2
Moy 14.9287-10 75 |5.1843-10 =5 |5.19-10 ~%|4.52 . 10° 23.46
5.1843-107515.19-10 ~2]4.41 - 10° 10.003
5.6 | My 3.9923-1073(3.9964-103{1.02-1073|2.01-10 73| 4.0044-10~3
ind. same same 3.9964 .10 3
Moy |3.4915-10 2 3.9924-103|1.43-10~*|8.00- 10° 3.19-10*
same same 108.8
Moy 19.0917-107419.9810-102 | 9.99 2.65 - 10° 2.65-10*
same same 109.8

In the above table, some values of r° are absent. This means that we could not
estimate them for different reasons. It is seen that estimate A° is always better than
Ay(o0) and, since it is an upper bound of A(c0), it is worthy to be used instead of
A(oo) when it can be calculated easily. The results on the Vesely failure rate
accuracy are quite expected. The accuracy is very good for group 1, good for groups
2 and 3, bad for group 4, and very bad for group 5. The difference between passive
redundancy and independent case is negligible. Parameter v does not affect the
accuracy. We never have ry, < 10 =3, even if py is small. Nevertheless, estimate
)\sup is good in the first three groups, very bad in group 4 and awful in group 5.
Generally, 6, is not a good estimate for ES, except for the case where ES can be
calculated explicitly (passive redundancy, variants b, and Ab,). Consequently, )\gu

p
is not a good approximation of A(0o).

3. The k-out-of-n Systems

Let us consider a system with n independent components C'1 to Cn. The system is
operating if and only if at least k components are operating (1 < k < n). The failure
rate of component C7 is A, its repair rate is p,. If all components are identical, then
we can lump the states with the same number of operating components resulting in a
birth-and-death process describing the dynamics of such a system. In this case, the
system can be examined easily. If the components are not identical, it is still
possible to find a pessimistic bound of the reliability in the following way. Let
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)\(1) > )\(2) >...> )\(n) (resp. By Sk S-S /,t(n)) be failure rates (resp. repair

rates) arranged in an decreasing order (resp. ascending order), and let

n—1
a; = Zl,\(j), 0<i<n-—1,
]:

)
b, = zly(j), 1<i<n.
J =
Consider a birth-and-death process with transition rates
AGi+1)=q, 0<i<n-1,
A(iyi—1)=b;, 1<i<n.

For this process, state ¢ means that exactly i components failed. It can be shown (see
Cocozza-Thivent and Roussignol [2]) that the system described by the birth-and-
death process (with the subset of “good” states M = {0,1,...,n—k}) has a worse
reliability performance than the initial one. But the pessimistic estimations using
the birth-and-death process may be not very accurate. We will see that, in this case,
it is better to use the Vesely failure rate approximation and to give bounds for the
relative error using the birth-and-death process.

3.1 Principle
Let (772) be a birth-and-death process with transition rates
A% i+1)=q;, 0<i<n—k, (3.1)
A%G,i—1)=b, 1<i<n-—k, (3.2)
and
To=inf{t:n) = 0,7) #7)
be its first return time to state 0. It can be shown, using test functions or Cocozza-

Thivent and Roussignol [2], that E, 7o <E, _;To(n € M) and ES < Ey7,. Let us
take

6=E, _Tg 06o=EyT,
These quantities can easily be found as solutions of the following linear system:
—(a; +by)zy +ayzy = — 1,
bz, _1—(e;+b)z;+azx, = -1, 2<i<n—k-1, (3.3)

bn—kwn—k—-l—bn—-kxn—-k: -1,

where z; = E;7,. This yields

— _1
==z, _1, 60—56+a:1.
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Let o be the intensity function of the process. Then a(n) # 0 if 7 is a state with
exactly k operating components. In this case,

a(n)s’\(l)+"'+’\(k):an—k'

Therefore,
T To To
En/ a(n®)du<a, _ kEn/ I =n—k)du<a, _ kE/ 17 =n —k)du.
0 0 0

The last inequality is very intuitive and can be proved using Cocozza-Thivent and
Roussignol [2]. In fact,

o

An—k
B, [ adusgpst, (3.4)
0

where ¢ is the probability that the process (ﬁg starting from state n —k — 1 reaches
state 0 earlier than state n — k. If y, is the probability that this process starting from
state i reaches state 0 earlier than state n — k, then

= (ay +b)y; tayyy = — by,
biy; _1—(a;+b)y;+ay; 4, =0, 2<i<n—k-2 (35)
b k—1Yn—k-2—(@n_ k1t 1)Vn_k—1=0,

and ¢ =y, _; _;- Using (3.4), we obtain

an—k1: A —k
bn—-kq yn—k—lbn—k

(if k=n—1 take y; =0). Since a(n)=0ifn#n—k,

7o To
By [ a(du= (=08, [ a()dus(1-v)e
0 0
and hence
€0 = (1—yy)e.

Now, let us find B, = Ey(o A 0y) by solving the linear system
—(ay+b)z +ayzy = -1,
biz; 1 —(a;+b)z;+a;z; 1= -1, 2<i<n—k~1 (3.6)
by k% k1= (G g+ by Rz, = -1,

where z; is the mean first passage time for the (initial) birth-and-death process
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(starting from state ¢) to subset {0,n —k + 1]. It follows that

Bp = +Z1

3.2 Numerical results

In all these examples n = 6. Consider the following four groups of data.

case | k A /\2 A3 /\4 Ay g
Hq Ho H3 27 Hs Hg
la |3 (10731073 |107%j10~3 {103 103
1 1 1 1 1 1
1.6 |3 ]10735-10"3{10"2 |2-10"3(8.10~ % 103
1 5 10 2 8-10"1 | 1
le |2 1073}5.-10"3|10"2 |2-10"3|8.-104 |10~ 3
1 5 10 2 8-10"1 | 1
1d |3 ]1073|5-1073{10"2(2-10"3|8-10"% |10~
1 1 1 1 1 1
20 |3 (1072|1072 1002|1072 |10~2 102
1 1 1 1 1 1
26 |2 1072|1072 1021072 |10—2 102
1 1 1 1 1 1
2¢ |3 |1072%|5-10"2|10"1 |2-10~2|8-10"3 |10~ 2
1 1 1 1 1 1
2.d {3 (1072{5.10"2|10" 1 {2.10~2{8-10"3 {102
1 5 10 2 g-10-1 ] 1
3a |3 (107 10" |10-!|10~Y |10-1 101
1 1 1 1 1 1
36 |2 10" 10"t J|wo-t{wo~t |i0-! 101
1 1 1 1 1 1
4 3 (10-Y5.10"1 1 |2-107%'|8-10"2 |10~?
1 1 1 1 1 1

In group 1, A, /,u, <1.25-10 3 and A i/pj<1.25- 10 =2 for all i and j. In group 2,
A/p <L 25 1072 and A, i/ 1; <1.25- 10_1f0r all i and j. In group 3, A\;/p; = 10_1
for all 7 and j. In group 4, there exists i such that A;/p, = 1.

Since the components are independent, the underlying Markov process is reversi-
ble and A(c0) = A% is an upper bound for A(c0); therefore, the calculation of A sup |
useless. Let us introduce quantity A! (o0) which is the asymptotic failure rate of the
birth-and-death process with transition rates a; and b;. This coincides with the true
asymptotic failure rate if A; = /\J and p; = Bj for all 7, j; in all other cases this is an
upper bound of A(co). Notlce that if A, = A, and By = 1 for all 7 and j, then ¢, and
50 are the exact values of E£ and ES, respectlvely, and therefore, A\ = )\gup The
results are listed in the following table.



The Failure Rate in Reliability. Numerical Treatment 35

data|  A(oc0) Ap(o0) = A0 PV M(c0) Agup
Ty

l.a | 5.9582-10~1115.9641-10 1 | 1.00-10~3 |5.9582-10 11| 5.9641-.10 11
1.00-10-3

1.6 | 1.9636-10~19(1.9682-10~1° | 2.31-10~3 [2.7684-10~8 | 2.7854-10 8
6.17-10~3

l.e | 9.8144-10~1419.8409-10~ 1 | 2.70-10~3 |8.6771-10 ~ 11| 8.7044 -10 — 11
3.15-10~3

1.d | 1.9623-10~2 [1.9672-10~° | 2.47-10~3 |1.8703-10~ 8| 1.8810-10 8
5.75-10~3

2.0 | 55952107 [5.6523-10~7 | 1.02-10 2 |5.5952-10 "7 | 5.6523-10 "
1.03-10 2

2.b | 2.8119-107° |2.8261-10~° | 5.05-10~3 |2.8261-10~°| 2.8261-10 ~°
5.08-10~3

2.c | 1.6147-10~° |1.6563-10~° | 2.58-10"2 |1.4831-10—%| 1.5753-10 %
6.71-10 "2

2.d | 1.8219-10~% [1.8652-10~% | 2.38-102 |2.0977-10 % | 2.2388-10 ~ 4
7.36-10"2

3.a | 3.0335-10~3 [3.3898-10~3 | 1.17-10~1 |3.0335-10 3| 3.3898-10 3
1.57-10 "1

3.b | 1.6040-10~% |1.6935-10~* | 5.58-10~2 [1.6935-10~*| 1.6935-10 4
6.02-10~2

4 3.3541-10~2 |4.3139-10~2 | 2.86-10~1 [2.0175-10~1| 3.2033-10 1

’ 30.5

The upper bound Ay (co) is better than M (c0) and Ay (00) is a good approximation of
A(00) in groups 1 to 3 (very good in groups 1 and 2). In group 4, the approximation
is not tight.

If \; =, and p; = p; for all i and j, then a good way to find Ay(co) is to com-

pute A0 = €9/ With

4. Systems with Independent Components

4.1 Principle

Consider a system with independent components and general working space which
means that we do not impose specific restrictions on M (such as in the case of k-out-
of-n systems) except for the coherence of the system. But the dynamics of the system
is still described by a Markov process with finite states space and transition rates A.
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Let all the components be operating at time 0.
Denote by C; the set of the states with exactly n —1 operating components. Let

a; = max Z A(n,€), b= Iélin Z A, &), (4.1)

UEC EECH_anﬂ: nel;n feci_l
n, = max{i:C; C M}, 7, =max{i:C;N M # 0}, (4.2)

where the number n,+ 1 is the order of the smallest minimal cutset.

In this section, when referring to relations (3.1) to (3.6), the coefficients a; and
b, are assumed to be those given in (4.1).

Let

6_:cﬁ,

where z,’s are solutions of system (3.3) with n —k =7_ and
@ = max a(n) = max _ A(n;?).
ngCy neMongCy
Let T](t) be a birth-and-death process with transition rates given by relations (3.1) and
(3.2). The same arguments as for the k-out-of-n system give

7o To
En/ a(nl)du < & En/ Imeu n <i< ﬁcci N M)du
0 0
To

— —0 —
S a Eﬁc/ I(Zc S 7’1‘ S nc)du'

0
Let t;,, 1<i<n ,—n.+1, be the mean time for process ﬁ? starting at n,+i—1 to

leave lnterval [@C,n ]- Then

where q = yﬂc" 1 (¢ =1if n,= 1),

and y,’s satisfy linear system (3.5) with n—k =n_. Quantities ¢;’s are solutions of
the following system

-(aﬂc+bﬂc)t1+aﬂct2: -1,
by ti-1tic1= (G pic1Tbp pioD)tita, 4y gt = -1 2<i<n —n,
b— — bz 1 -1

n—n nn—-n+1_

This yields

€= &(tn -n, +1+

(y; =01if n,=1). Let us notice that A(Cy;P) # 0 if and only if n, = 1. Finally, we
take

l—q' A(Cp; P) _
tl), eoz—a%_‘+$7 tia(l—y,)

1
8y = a +z4,
and

IBD__+21

where z; are solutions of the system (3.6) with n—k=n. and a, =
—C

max A(n,&).
anecﬁczxeCEchl (n,€)
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4.2 Systems with common mode

Let us return to the previous example but add there a so-called common mode: the
system behavior is just the same as described in Subsection 4.1 but it is subjected to
additional events called the common mode. If a common mode occurs, then the ith
component (if it is operating) can fail with probability p; independently of other com-
ponents. Let the occurrence rate of the common mode be A. Define p = max;p;, and
denote by @ the maximum value of the intensity process calculated without the
common mode factor Let n, and 72, be the quantities defined in (4.2).

Process (7Y) is no longer a blrth and-death process. Let AY be the transition
rates matrlx of the process (77 ) without the common mode. The true transition rates
matrix B of process (nt) can be expressed in terms of A° as follows:

B (1,1—1):A0(1,z_1),
B, i+1) = A%G,i + 1)+ Al(n—i)p(1—p)" i~ 1,
B%,i+m)=ACT_p™1-p)" " "™, 2<m<h, —i.

Define BO(i,i) = — Yt ;B%(i,j) and take 6 = z_ , where z.’s satisfy the linear
equations B ¢
20=0, Y BG,j)z;=—1 (i>1).
Let J
" =Yp -1

where y,’s are the solutions of the system

J
We now define ¢,’s as the solutions of the system

tg=0, Y B%i+n.—1Ljt;=-1 (1<i<n —n +1).

Then ’ ot
1
€ = Apé +Ja;c_+_

Quantities €4, &y, and fp can be estimated with the help (1.5), (1.6), and (1.7).

4.3 Numerical results

In practice, the set of failed states is often expressed in terms of so-called minimal cut-
sets. A cutset is a collection of components such that their simultaneous failures im-
ply the failure of the system. A cutset is called minimal if it does not contain smaller
cutsets. Clearly, the knowledge of all minimal cutsets enables us to construct all
failed states.

In the following examples, we consider a system with n =15 components
C1,...,C5, and four families of minimal cutsets:

¢, = {(C1,C2),(C2,C4,C5),(C1,C3,C5)},
¢, = {(C2,C4,C5),(C1,C3,C5)},

¢, = {(C1,C3,C5),(C2,C3,C4,C5)},

¢, = {(C2,C3,C4,C5)}.
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data | C | A Ay A3 Ay Ag A
151 Ko H3 By Hy He
Py Dy P3 Py Ds
1 |e (1073102 |1073 {1073 1072 |o
1 1 1 1 1
0 0 0 0 0
2 |Cy (10731073 {1073 (1073 |03 o
1 1 1 1 1
0 0 0 0 0
3 |Cp(1073[1073 J10-3 (1073 j10~3 o
1 1 1 1 1
0 0 0 0 0
4 |cgl10731073 j1073 (1073 1073 o
1 1 1 1 1
0 0 0 0 0
5 ¢ (10721072 |1072 (1072 |10=% |0
1 1 1 1 1
0 0 0 0 0
6 |c (10721072 |107% 1072 1072 |0
1 1 1 1 1
0 0 0 0
7 |c (10707t jo-t ot jwot o
1 1 1 1 1
0 0 0 0 0
8 [, (10710~ f10-! 10—t |107! 0
1 1 1 1 1
0 0 0 0 0
9 |¢ (10731073 |1073 1073 {1073 |10°°
1 1 1 1 1
01 | 01 Jo1 |01 0.1
10 |¢ {10730~ |w0-3|10~% jw0=* J0°°
1 1 1 1 1
05 | 05 105 |05 0.5
11 ¢ 107310~ j10-3{10~-* |10~* |10°°
1 1 1 1 1
1 1 1 1 1
12 |¢ (1073|1073 |10-3]10~3% |07 |10—*
1 1 1 1 1
1 1 1 1 1




The Failure Rate in Reliability.

Numerical Treatment

data | C| X Ay A3 A Ag A
H1 Ha H3 Hyq Hs
Pq P2 P3 Py Ps

13 |c, (1073|1072 107 |10~ 1073 |1073
1 1 1 1 1
1 1 1 1 1

14 |¢, (1073103 |1073 {1073 (1073 1073
1 1 1 1 1
0.5 | 05 105 0.5 0.5

15 |¢, |1073]10% |10™% j10=* |10=% |107?
1 1 1 1 1
0.5 | 05 105 0.5 0.5

16 |¢, (1073510731072 |2.1073|8-10" %4102
1 5 10 2 0.8
0.5 | 05 105 0.5 0.5

17 |¢, [1073]|5-1073{1072 |2.1073|8-10" 410"
1 5 10 2 0.8
0.5 | 05 105 0.5 0.5

18 |¢; |1073|5-1073|3-1073|2-1073|8-10 410~ 2
1 5 1 2 0.8
05 | 05 105 0.5 0.5

19 |¢ {1073|5.1073|3.1073(2.1073|8.10 4105
1 5 1 2 0.8
0.5 | 05 105 0.5 0.5

20 €€, [1073]5-1073|3.1073|2.1073|8-10 " %102
1 5 1 2 0.8
0.5 1 0 0.25 | 0.75

21 |¢ [1073|5-1073|3-10"3|2.1073|8-10 %10~ ®
1 5 1 2 0.8
0.5 1 0 0.25 | 0.75

22 |¢, |107%|5.1072{3.107%|2.10~2?|8-10 102
1 5 1 2 0.8
0.5 1 0 025 | 0.75

23 |¢,|107%|5-10"%|3-107%|2.10"2|8-10 3105
1 5 1 2 0.8
0.5 1 0 0.25 | 0.75

24 |C,[10725-1072{3-10"2(2.10~2|8-10~ 3102
1 5 1 2 0.8
0.5 1 0 0.25 | 0.75

39
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data | C | X A A3 A As A
Hq Ha H3 Hq Hs
P Py P3 Py Ps

25 [C,|107%|5-1072|3.107%|2.107%|8-10" 310~ °
1 5 1 2 0.8
0.5 1 0 0.25 | 0.75

The following table contains the results of our calculations. If a system consists
of independent components (see lines 1 to 8 in the table above and below), then we
estimate ry, and )\gup by formulas from paragraph 4.1. In the absence of common
mode, Ay (00) = A% is an upper bound for A(co) and therefore, no need to fill the

column Asup. In the case of common mode, we use formulas from paragraph 4.2.

data|  A(oco) Ay (o0) Py Meup ,\g
Tv Asup
1 2.0000-10~% [2.0020-10~¢ |[9.99-10—4 2.0020-10 6
3.70-10~3 9.9701-10~8
2 5.9790-10~° [5.9820-10~° | 5.02-10~4 5.9820-10 ~°
2.18-10~3 1.9920-10~8
3 2.9935-10~9 [2.9950-10~° | 5.01-10~% 2.9950-10~°
2.18-10-3 1.9920-10—8
4 3.9819-10~12(3.9840-10~12 | 5.30-10 4 3.9840-10 12
5.84-10~4 9.9552.10 ~ 12
5 1.9986-10~% |2.0183-10~% | 9.85.10 3 2.0183-10 4
4.05-10~2 9.7069-10 4
6 3.8310-10 8 [3.8499-10~% | 3.37-10~3 3.8499.10 8
5.94.10~3 9.5714-10~8
7 1.9094-10~2 |2.0690-102 | 8.35-10 2 2.0690-10 ~2
9.29.10~1 7.5776-10 "2
8 2.6356-10 % |2.7322.10~% | 3.37-10 2 2.7322.10 %
7.28-10~2 7.0000-10 %
9 2.1223-10~% [2.1244.107% | 1.00-1073 |2.1323.-10~ | 2.1243.10©
3.72-10~3 1.8408-10 =5
10 |5.7632-1076 |5.7699-10"¢ | 1.16-10~2 |5.7915-10 6| 5.7655-10 ~©
3.74-10~3 2.2066-10 ~°
11 | 1.2000-10~° {1.2015-10~5 | 1.28-10~3 |1.2060-10~°| 1.2002-10~°
3.76-103 2.8309-10 °
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data|  A(o0) Ay (o0) PV Asup 20
r 20
\4 sup
12 | 1.0200-10 % [1.0214-10~% | 1.32-1073 |1.0255-10—*| 1.0200-10 %
4.09-10-3 1.1868-10~4
13 | 1.0020-10~2 ]1.0033-10~3 | 1.33-10~3 |1.0112-10 3] 1.0020-10 3
7.80-10~3 1.0224-10~3
14 | 3.7848-10~% [3.7907-10~% | 1.56-10~3 [3.8112-10~*| 3.7848-10 ¢
5.40-107° 3.9856-10 ~*
15 | 3.7812-10~3 [3.2978-10~3 | 4.40-10~3 |3.8841-103| 3.7813-103
2.27-10~2 3.8588-10 "3
16 | 3.7887-10~3 |3.8221-10~3 | 8.83-10 3 [4.0342-10~3| 3.7889.10 3
5.55-10~2 4.7521-10~3
17 | 9.7547-10~% |9.8024-10~¢ | 4.89.-10~3 [1.0131-10~5| 9.7799-10 6
3.35-10 2 5.8858 .10 4
18 | 3.7900-10~3 |3.8163-10~3 | 6.95-10 2 {3.9640-10 3| 3.7902-10 3
3.87-10~2 4.1912-10~-3
19 | 9.7508-10~° [9.7911-10~% | 4.14-10~3 | 9.9608-10 "% 9.7759-10 ~ 6
1.73-10~2 1.9870-10 %
20 | 5.9540-103 [6.0009-10~3 | 7.88-10~3 [6.3491-10 "3 5.9540-10 3
5.80-10~2 6.4811-10~3
21 | 1.1926-10~% [1.1978-10~° | 4.39.10~2 |1.2186-10 %] 1.1951-10 %
1.73-10 2 2.0096-10"4
22 | 6.6055-10"3 |6.9191-10=3 | 4.75-10~2|9.0785-10 "3 | 6.6331-10 3
3.12.10 1 2.7801-10 — 2
23 | 5.8590-10 % [6.0980-10~* | 4.08-10~2 |7.6474-10~*| 6.0953-10 4
2.54.10~1 1.9121-10~2
24 | 6.5064-10"° [6.5859-10~5 | 1.22-10~2 |7.0837-10% | 6.5213-10°
7.56-10~2 6.6217-10 3
25 | 3.1126-10~7 [3.1401-10~7 | 8.82-10~3 {3.2655-107 | 3.1347-10~7
3.99-10 2 3.3694-10 ~3

One can see that Ay (co) approximates A(co) to a good accuracy and that ry is an
accurate estimate of py, in all cases except for 7, 22, and 23. In all cases, A0 is a
better bound than the Vesely failure rate Ay (co). The smaller ratios of failure rates
to repair rates are and the larger the set M
approximations.

set b will be explained in the following section (see Remark 5.1).

of good states is, the better are the
When failure rates are small in comparison with repair rates, the
approximation is good, since the first regeneration time is small and processes
(77?),(7]%) and (n}) are close to each other. The reason of the influence of the size of
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Remark 4.1: All systems considered in previous examples are NBU (see Cocozza-
Thivent and Roussignol [1]) and therefore,

R(t) > e~ M),

Because of this, our estimates of A(co) lead to pessimistic bounds of the system
reliability.

5. Semi-Markov Process
5.1 An alternative renewal process

We have already seen (Remark 1.3.13) that the Vesely failure rate of a semi-Markov
process is equal to 1/MUT. We now consider an alternative renewal process, which
can be regarded as a semi-Markov process with two states: 1 (operating state) and 0
(failed state). Denote by F the distribution function of the sojourn time in state 1,

00 . F'(t
by m= [ (1-F(t))dt its mean value, and by h(t) = 1——%—()—{)-

0 _
function. Assume that there exists the limit h(oco) =lim, , h(t) < oo. Then the
asymptotic failure rate and the asymptotic Vesely failure rate func-
tions for such a system are equal to

its hazard rate

A(o0) = h(00), and Ay (o0) = %, respectively. (5.1)

If Ay(co) is regarded as an estimate of A(oco), then the accuracy of this estimate
depends (in general) on distribution function F. Indeed, in the exponential case, h is
constant and A(oo) = Ay(00) = A(t). But if, say, F' is a gamma-distribution with the
density

F'(t) = I‘(;)bata —le~ x/b,

Ay (00) = A(oo

M) =ty =, IS 1y
and the accuracy depends on how far is the gamma-distribution from an exponential
distribution.

Although we cannot use our method because process (n(t)) is not regenerative, this
does not matter, since we obtain accuracy estimates directly from (5.1).

Remark 5.1: Let us return for a while to the Markovian case. = When failure
rates are small in comparison with repair rates and when set M is large, then the pro-
bability for Markov process (7,) to return to the “perfect” state before entering into
% is high. Because of this, the sojourn times distributions in set M are close to expo-
nential distributions (see Keilson [4]), and it is intuitively reasonable to consider that
the sequence of successive sojourn times of process (7,) in sets M and P is approxi-
mately an alternative renewal process with an exponential distribution function F' of
interrenewal times. This can explain why the approximation of A(co) by Ay (c0)
(and even of A(t) by Ay/(t)) is good in this case.

then

5.2 A simple example of a semi-Markov process

Let a facility have four operating states e;,e,,e3,e4 and two failed states ey and eg.
The initial state is ;. When leaving state e,, the facility can reach one of the three
following states with probabilities p,,q,, and r;, respectively, (p; +¢; +7, = 1):
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° state e,; this can be treated as if a minor failure would have occurred
which was detected and the facility had been repaired;

. state eg; this means that a minor failure has occurred but it was not
detected;

° state eg; the system fails.

After this, the system behaves as follows. Upon repairing a minor failure, the facili-
ty comes back to state e;. From state ez, the facility can go either to operating
state e, (if safety system has worked) with probability p, or to failed state ey with
probability 1 — p,. State e, leads to state e,.

Let us describe the facility’s behavior by a semi-Markov process with the transi-
tion rate functions including only non-zero terms as follows

A(eq,e9,8) = p1A(s), Aleg,es,8) = q17(5), Aley,es,5) = riA(s),
Aeg,eq,8) = paAy(s), Ales eg,5) = (1= py)Ay(s),
Ales,eq,8) = py(s), Aleg,eq,5) = py(s), Aleyseq,5) = pg(s), Aleg,eq) = py(s),

and apply Proposition 1.5.2 to Markov process 7y = (7,,y,), where y, is the elapsed
time of the process in its current state at time ¢. Using Proposition 1.2.5, one can see

that non-zero terms of transition rate functions of semi-Markov process (772) have the
form

Ao(el,e2,s) = p A (), Ao(el,e3,s) = ¢ 7,(s),
A%(egyeq,8) = PaAg(s), A%(egreq,8) = py(s), A0(34’e2’5) = p3(s)-
Process (7'°) = ((n2,3%)) is Markovian and
rid (), if 7 = ey,
(1- Pz)Az(y(t))’ if ’7? = €3

Let W,,W,,W3 and W, be r.v.’s with hazard rates (p1+q1)/\1, Hoy PoAg, and pg
respectively. Evidently the sogourn time of the process (7,) in state e, has the same
distribution as W,. Process (7 ) is regenerative with regeneration state e; and
w w
1

0‘(7)?, y(t)) = Ao(n(t)’ 7yt)

3

E(=E / ™y 1(s)ds+p +q1/ (I —pg)Aqy(s)ds
0

(o]

:[ T l(s)P(W1>s)ds+( + )(1 pz)/ Ay (s)P(W3 > s)ds

__"Nn 4;(1 = py)
P1ta (pr+4)p,y

Quite similarly,

Wj

max(E¢!,E¢”") <E / (1= py)Ay(s)ds = ! ;2” 2,
0

It can be easily seen that
max(ES, ES)) < E(W2 +W3+W,),

ES = EW, +EW, + 5 +qE(W3+W4)
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Recall that o is the first entrance time of process (1°) into P = {e5;eq}. Let o be
the recurrence time to state e;. Then

S t
Bp=E [ exp | — [ a(nO)du |dt = E(c Acy)
[\

‘111’2

=EW, + —F—EW;, +

o 4 T TEW,+ W),

Proposition 1.5.2 yields

be €
py < 6€<6 +'ﬁ‘g')7 /\0 = %a

h
where ™1 g:(1=py) ¢ _1-p,

- e = : 5.2
Pr+ar (py+a)py’ Py (5.2)
q
§=EW,+ W3+ W), ﬂD:EW1+ﬁ‘ W3+p +q P E(W 4+ Wy),
B = EW, + EW, + 5 B(W5 + W),

5.3 Numerical results

Let us consider the example described in Subsection 5.2. With m; denoting the mean
sojourn time in state e; (1 <i < 6), we set

m; =1, mzzi%, mg =1, m4=ﬁ, mszjlﬁ’ mg=1
and suppose that W, (the sojourn time of the process (7,) in state e;) has the Erlang
distribution with parameter k; (and mean m,) (that is, W, can be treated as a sum of
k; i.i.d.r.v.’s with common exponential distribution having parameter k;/m;).

Case 1. Let
pl == 0-5, ql = 0-4, T‘l = 0-1, p2 = 0-99.

Then
Ap(00) =17.3840-10 2, r;, =9.19-10 2,

Apup = 8.0624-10 72, X =7.9511-10 2,
and
° for ky =Lk, =Lky=1k,=1kg=1,kg=1

Moo) =7.2432-107 2%,  p,, =1.94-10" %
o forky =1,ky=5ky =1k, =10,ks="7ks=6

Aoo) =7.2432-1072%, p, =194-10"%
o forky =3,ky=10,ky =12,k = 50,ks = 10,kg = 15

Moo) =7.4459-107 2%,  p, =8.32-10 3,
Case 2. Let
p; =01, ¢ =05, r; =04, p,=0.99.

Then
Ap(c0) =2,6858-10~1, 7, =3.85-1071,
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Aoup = 3.7204-10 71, X =3.6557-10 7,
and
° forky =1, kg =Lk =1k, =1Lky=1kg=1

A(o0) = 2.4331-10 1, pp, = 1.04-10 7 1
° for ky = 1,ky =5,ky = 1,k; =10,k =T,kg =6
AMoo) =2.4332-1071,  p, =1.04-107 %
o  for k; =3,ky=10,ky = 12,k, = 50,k5 = 10, ks = 15
Moo) =2.7024-1071, p,, =6.15-10" 1.

Case 3. Let
py =01, ¢, =05, r; =04, p,=099.
Then
Ap(o0) =2.9851-107 1, 7, =591-10 "1
Ayup = 474941071, g =4.1115-10"1,
and

o forky=1lky=1lky=1k,=1ks=1ks=1
Aoo) =2.7586-10 "1, p, =8.21-10 "%

o forky=1,ky="5ky=1,k,=10,ks=T,ks=6
AMoo) =2.7586-10 "1, p, =8.21-10"%

o fork, =3, ky=10, ky =12, k, = 50, k5 = 10, kg = 15
Moo) =3.1128-1071, py, =4.10-10 2

45

Comments: The results displayed above show that the influence of the order of
the Erlang distributions on reliability characteristics is minor. But our estimate is

very sensitive to the value of p,. From other examples, one can see that the sensiti-

vity with respect to p;, ¢;, and 7, is also high. This can be seen from equation (5.2).

In our examples, A(00) < Ay (o0) for small values of k;’s, but not for large values.

addition, the bounding by A, gives better results than by /\sup.
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